Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Representation of a crinkled arc


Author: Richard A. Vitale
Journal: Proc. Amer. Math. Soc. 52 (1975), 303-304
MSC: Primary 46C10
DOI: https://doi.org/10.1090/S0002-9939-1975-0388056-1
MathSciNet review: 0388056
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Johnson [A crinkled arc, Proc. Amer. Math. Soc. 25 (1970), 375-376] has shown that under suitable normalizations all crinkled arcs are unitarily equivalent. Using this result, we find a general series expansion for a crinkled arc:

$\displaystyle f(t) = \sqrt 2 \sum\limits_{n = 1}^\infty {{x_n}\tfrac{{\sin (n -... ...yle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}})\pi }}} ,$

where $ \{ {x_n}\} $ is an orthonormal set.

References [Enhancements On Off] (What's this?)

  • [1] R. Ash, Information theory, Interscience Tracts in Pure and Appl. Math., no. 19, Interscience, New York, 1962. MR 37 #5049.
  • [2] P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [3] G. G. Johnson, A crinkled arc, Proc. Amer. Math. Soc. 25 (1970), 375--376. MR 41 #4212. MR 0259574 (41:4212)
  • [4] -, Hilbert space problem four, Amer. Math. Monthly 78 (1971), 525-527. MR 44 #3113. MR 0285896 (44:3113)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46C10

Retrieve articles in all journals with MSC: 46C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0388056-1
Keywords: Crinkled arc, Brownian motion, Karhunen-Loève expansion
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society