Abstract. Let A be an n-square matrix with zero trace over an algebraically closed field F, and let the characteristic of F not divide n. It is shown that A can be expressed as $A = XY - YX$ where the eigenvalues of X and Y may be arbitrarily specified as long as those of X are distinct.

Let F be a field, and let A be an n-square matrix over F. We say that A has property K if the following holds: If $\lambda_1, \lambda_2, \ldots, \lambda_{2n} \in F$ with $\lambda_i \neq \lambda_j$ when $1 \leq i < j \leq n$, then A can be written as a commutator $A = XY - YX$ where X and Y are matrices over F with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $\lambda_{n+1}, \lambda_{n+2}, \ldots, \lambda_{2n}$, respectively. Clearly if A has property K then $\text{tr}(A) = 0$. C. R. Johnson [2] proved the converse in the case where F is the complex field. We show that every n-square nonscalar matrix is similar to a matrix with $n-1$ zero diagonal entries, and then use this result and a theorem due to S. Friedland [1] to extend Johnson's result to arbitrary algebraically closed fields.

Let $A + B$ be the direct sum of the square matrices A and B, and let $A(i)$ be the principal submatrix of A that remains after row i and column i are removed. The set of all n^2-square matrices over F is denoted by $\Gamma_n(F)$.

Theorem 1. If $A \in \Gamma_n(F)$ is not a scalar matrix then there exists $B = (b_{ij}) \in \Gamma_n(F)$ such that B is similar to A and $b_{ii} = 0$ for $i = 1, 2, \ldots, n - 1$.

Proof. We induct on n. If $A \in \Gamma_n(F)$ is similar to the companion matrix of its characteristic polynomial, then the theorem holds. Hence, the theorem holds for $n = 2$. Suppose that $A \in \Gamma_3(F)$, A is not a scalar matrix, and A is not similar to the companion matrix of its characteristic polynomial. Then A is similar to a matrix of the form

$$
C = \begin{bmatrix}
0 & a & 0 \\
1 & b & 0 \\
0 & 0 & c
\end{bmatrix}
$$
where the polynomial \(\lambda - c \) divides the polynomial \(\lambda^2 - b\lambda - a \). If \(b = c = 0 \), then the theorem holds. If \(b = c \neq 0 \), then \(a = 0 \), and it is easy to see that \(C \) is similar to the matrix

\[
\begin{bmatrix}
0 & -b & b \\
-b & 0 & b \\
-b & -b & 2b
\end{bmatrix}.
\]

Suppose that \(b \neq c \), and let \(D = b + c \). If we apply the theorem to \(D \), we see that there exists a nonsingular \(P \in \Gamma_2(F) \) such that if

\[
B = (b_{ij}) = (1 \pm P)C(1 \pm P)^{-1}
\]

then \(b_{ii} = 0 \) for \(i = 1, 2 \). Hence, the theorem holds for \(n = 3 \). Now suppose that the theorem holds for \(n = m \) where \(m \geq 3 \). Let \(A \in \Gamma_m + 1(F) \) and not be a scalar matrix. Since \(A \) is not a scalar matrix we may assume that \(A(m + 1) \) is not a scalar matrix. Applying the inductive assumption to \(A(m + 1) \), we see that there exists a nonsingular \(P \in \Gamma_m(F) \) such that if

\[
C = (c_{ij}) = (P \pm 1)A(P \pm 1)^{-1}
\]

then \(c_{ii} = 0 \) for \(i = 1, 2, \ldots, m - 1 \). If \(c_{mm} = 0 \) then the theorem follows.

Suppose that \(c_{mm} \neq 0 \). Then \(C(1) \) is not a scalar matrix. Therefore, applying the inductive assumption to \(C(1) \), we see that there exists a nonsingular \(Q \in \Gamma_m(F) \) such that if

\[
B = (b_{ij}) = (1 \pm Q)C(1 \pm Q)^{-1}
\]

then \(b_{ii} = 0 \) for \(i = 1, 2, \ldots, m \). This proves the theorem.

Theorem 2. Let \(F \) be an algebraically closed field and let \(\text{char}(F) \nmid n \). If \(A \in \Gamma_n(F) \) with \(\text{tr}(A) = 0 \), then \(A \) has property \(K \).

Proof. Clearly the theorem holds for \(A = 0 \). Suppose that \(A \neq 0 \). Since \(\text{tr}(A) = 0 \) and \(\text{char}(F) \nmid n \), \(A \) is not a scalar matrix. Hence, by Theorem 1, since \(\text{tr}(A) = 0 \), there exists a nonsingular \(P \in \Gamma_n(F) \) such that if \(B = PAP^{-1} \) then \(b_{ii} = 0 \) for \(i = 1, 2, \ldots, n \). Let \(\lambda_1, \lambda_2, \ldots, \lambda_{2n} \in F \) with \(\lambda_i \neq \lambda_j \) when \(1 \leq i < j \leq n \). Let \(U = \lambda_1 \hat{+} \lambda_2 \hat{+} \cdots \hat{+} \lambda_n \), and let \(V = (v_{ij}) \in \Gamma_n(F) \) such that

\[
v_{ij} = b_{ij} / (\lambda_i - \lambda_j), \quad i \neq j, \quad i, j = 1, 2, \ldots, n,
\]

and \(v_{11}, v_{22}, \ldots, v_{nn} \) are chosen [1] so that \(V \) has eigenvalues \(\lambda_{n+1}', \lambda_{n+2}', \ldots, \lambda_{2n}' \). Letting \(X = P^{-1}UP \) and \(Y = P^{-1}VP \), we see that \(A = XY = YX \) where \(X \) and \(Y \) have eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n, \lambda_{n+1}', \lambda_{n+2}', \ldots, \lambda_{2n}' \), respectively. Therefore, \(A \) has property \(K \).
The requirement that F be algebraically closed cannot be removed unqualifiedly from Theorem 2. To see this, let $A \in \Gamma_2(F)$ such that A has no eigenvalues in F. Let $Y \in \Gamma_2(F)$ such that Y has two equal eigenvalues in F. Then Y is similar to a matrix of the form $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$ where $a, b \in F$. Hence, if $X \in \Gamma_2(F)$, then the matrix $XY - YX$ has two eigenvalues in F. Therefore, A does not have property K.

The hypothesis that $\text{char}(F) \nmid n$ in Theorem 2 can be replaced by the requirement that A not be a nonzero scalar matrix.

Theorem 3. Let F be an algebraically closed field, and let $A \in \Gamma_n(F)$ with $\text{tr}(A) = 0$. Then A has property K if and only if there does not exist a nonzero $a \in F$ such that $A = al$.

Proof. If A is not a nonzero scalar matrix, then a slight modification of the proof of Theorem 2 shows that A has property K. Suppose that $A = al$ for some nonzero $a \in F$. Assume that A has property K. Then $A = XY - YX$ for some $X, Y \in \Gamma_n(F)$ where X has n distinct eigenvalues. Since A is a scalar matrix, we may assume that X is a diagonal matrix. However, if X is a diagonal matrix, then $XY - YX$ has all diagonal entries equal to zero. Since this contradicts $A = al$ where $a \neq 0$, the theorem follows.

Added in proof. Theorem 1 of a paper by Joel Anderson and Joe Parker, Jr. [Linear and Multilinear Algebra 2 (1974), 203–209] which appeared after this note was accepted for publication implies our Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA IN HUNTSVILLE, HUNTSVILLE, ALABAMA 35807