Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Remarks on dilations in $ L\sb{p}$-spaces


Authors: M. A. Akcoglu and L. Sucheston
Journal: Proc. Amer. Math. Soc. 53 (1975), 80-82
MSC: Primary 47A35; Secondary 28A65
DOI: https://doi.org/10.1090/S0002-9939-1975-0377558-X
MathSciNet review: 0377558
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (X,\;\mathcal{F},\;\mu )$ be a nonatomic measure space. It is shown that there exists a unitary operator $ U$ on $ {L_2} = {L_2}(X,\;\mathcal{F},\;\mu )$, a function $ f\epsilon {L_2}$, and a nonnull set $ A$ in $ \mathcal{F}$ such that $ {n^{ - 1}}\Sigma _{i = 1}^n{U^i}f$ diverges on $ A$.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akcoglu, A pointwise ergodic theorem in $ {L_p}$ spaces, Canad. J. Math. (to appear). MR 0396901 (53:761)
  • [2] -, Positive contractions of $ {L_1}$ spaces, Math. Z. (to appear).
  • [3] M. A. Akcoglu and H. D. B. Miller, Dominated estimates in Hilbert space (to appear). MR 0397443 (53:1302)
  • [4] M. A. Akcoglu and L. Suchestin, On the dominated ergodic theorem in $ {L_2}$ space, Proc. Amer. Math. Soc. 43 (1974), 379-382. MR 0333770 (48:12094)
  • [5] -, On convergence of iterates of positive contractions in $ {L_p}$ space, J. Approximation Theory 13 (1975), 348-362. MR 0367151 (51:3393)
  • [6] D. L. Burkholder, Semi-Gaussian subspaces, Trans. Amer. Math. Soc. 104 (1962), 123-131. MR 25 #2426. MR 0138986 (25:2426)
  • [7] B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson, Paris; Akad. Kiadó, Budapest, 1967; English rev. transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest, 1970. MR 37 #778; 43 #947.
  • [8] A. Ionescu-Tulcea, Ergodic properties of isometries in $ {L^p}$-spaces, $ 1 < p < \infty $, Bull. Amer. Math. Soc. 70 (1964), 366-371. MR 34 #6026. MR 0206207 (34:6026)
  • [9] H. L. Royden, Real anàlysis, 2nd ed., Macmillan, New York, 1968.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A35, 28A65

Retrieve articles in all journals with MSC: 47A35, 28A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0377558-X
Keywords: $ {L_p}$-space, contraction, isometry, dilation
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society