Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A Sturm-Liouville theorem for some odd multivalued maps

Authors: Jo ao-Paulo Dias and Jesús Hernández
Journal: Proc. Amer. Math. Soc. 53 (1975), 72-74
MSC: Primary 47H99; Secondary 47A99
MathSciNet review: 0377632
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ T:H \to {2^H}$ be the subdifferential of a real l. s. c. convex function on an infinite dimensional, separable, real Hilbert space $ H$. Assuming that $ T$ is odd (i.e. $ T( - u) = - Tu,\;\forall u\;\epsilon H)$), $ 0\epsilon T(0),\;{(I + T)^{ - 1}}$ is compact and $ T(0)$ satisfies a geometrical condition, we prove that $ T$ has an infinite sequence $ \{ {\lambda _n}\} $ of eigenvalues such that $ 0 \leqslant {\lambda _{n\,\overrightarrow n }} + \infty $.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H99, 47A99

Retrieve articles in all journals with MSC: 47H99, 47A99

Additional Information

Keywords: Subdifferential, maximal monotone operator, genus of a closed symmetric subset, Sobolev spaces
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society