Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A fixed point theorem for hyperspaces of $ \lambda $ connected continua


Author: Charles L. Hagopian
Journal: Proc. Amer. Math. Soc. 53 (1975), 231-234
MSC: Primary 54F20; Secondary 54B20
DOI: https://doi.org/10.1090/S0002-9939-1975-0377828-5
Addendum: Proc. Amer. Math. Soc. 62 (1977), 374-375.
MathSciNet review: 0377828
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that the hyperspace of compact connected subsets $ \mathcal{C}(X)$ of a $ \lambda $ connected continuum $ X$ can be $ \epsilon $-mapped (for each $ \epsilon > 0$) into the plane. We prove that $ X$ is either arc-like or circle-like. It follows from this theorem and results of J. T. Rogers, Jr. and J. Segal that $ \mathcal{C}(X)$ has the fixed point property.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Snake-like continua, Duke. Math. J. 18 (1951), 653-663. MR 13, 265. MR 0043450 (13:265a)
  • [2] E. Dyer, A fixed point theorem, Proc. Amer. Math. Soc. 7 (1965), 662-672. MR 17, 1232. MR 0078693 (17:1232d)
  • [3] C. L. Hagopian, Disk-like products of $ \lambda $ connected continua. I, Proc. Amer. Math. Soc. 51 (1975), 448-452. MR 0375255 (51:11451)
  • [4] -, Disk-like products of $ \lambda $ connected continua. II, Proc. Amer. Math. Soc. 51 (1975), 448-452. MR 0375255 (51:11451)
  • [5] W. Holsztyński, Universal mappings and fixed point theorems, Bull, Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 433-438. MR 36 #4545. MR 0221493 (36:4545)
  • [6] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1042), 22-36. MR 3, 315. MR 0006505 (3:315b)
  • [7] R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 0150722 (27:709)
  • [8] S. B. Nadler, Jr., Some problems concerning hyperspaces, Topology Conf. (Virginia Polytechnic Inst. and State Univ., 1973), Lecture Notes in Math., vol 375, Springer-Verlag, New York, 1974, pp. 190-197. MR 0370465 (51:6692)
  • [9] J. T. Rogers, Jr., Dimensions of hyperspaces, Bull. Polon. Acad. Sci. 20 (1972), 177-179. MR 0370535 (51:6762)
  • [10] -, Hyperspaces of arc-like and circle-like continua, Topology Conf. (Virginia Polytechnic Inst. and State Univ., 1973), Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, pp. 231-235. MR 0356001 (50:8474)
  • [11] J. Segal, A fixed point theorem for the hyperspace of a snake-like continuum, Fund. Math. 50 (1961/62), 237-248. MR 25 #2582. MR 0139144 (25:2582)
  • [12] -, Hyperspaces of the inverse limit space, Proc. Amer. Math. Soc. 10 (1959), 706-709. MR 21 #7492. MR 0108780 (21:7492)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20, 54B20

Retrieve articles in all journals with MSC: 54F20, 54B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0377828-5
Keywords: Hyperspaces, chainable continua, arc-like continua, circle-like continua, fixed point property, lambda connectivity, hereditarily decomposable continua, disk-like continua, triod, snake-like continua, unicoherence, $ \epsilon $-map into the plane, antipodal points, Borsuk-Ulam theorem
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society