Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A totally real surface in $ CP\sp{2}$ that is not totally geodesic


Authors: Gerald D. Ludden, Masafumi Okumura and Kentaro Yano
Journal: Proc. Amer. Math. Soc. 53 (1975), 186-190
MSC: Primary 53C40
DOI: https://doi.org/10.1090/S0002-9939-1975-0380683-0
MathSciNet review: 0380683
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An example of a totally real surface immersed in complex projective space is given. This surface is not totally geodesic. The relation of this example to previous theorems on totally real submanifolds is given.


References [Enhancements On Off] (What's this?)

  • [1] K. Abe, Applications of Riccati type differential equations to Riemannian manifolds with totally geodesic distributions, Tôhoku Math. J. (2) 25 (1973), 425-444. MR 0350671 (50:3163)
  • [2] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266. MR 0346708 (49:11433)
  • [3] S. S. Chern, M. P. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. M. Stone, Univ. of Chicago, Chicago, Ill., 1968). Springer, New York, 1970, pp. 59-75. MR 42 #8424. MR 0273546 (42:8424)
  • [4] C. S. Houh, Some totally real minimal hypersurfaces in $ C{P^2}$, Proc. Amer. Math. Soc. 40 (1973), 240-244. MR 47 #5737. MR 0317189 (47:5737)
  • [5] H. B. Lawson, Jr., Rigidity theorems in rank-$ 1$ symmetric spaces, J. Differential Geometry 4 (1970), 349-357. MR 42 #2394. MR 0267492 (42:2394)
  • [6] G. D. Ludden, M. Okumura and K. Yano, Real submanifolds of complex manifolds, Rend. Accad. Naz. Lincei (to appear).
  • [7] M. Okumura, Submanifolds of real codimension $ p$ of a complex projective space (to appear).
  • [8] B. O'Neill, The fundamental equations of submersion, Michigan Math. J. 13 (1966), 459-469. MR 34 #751. MR 0200865 (34:751)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40

Retrieve articles in all journals with MSC: 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0380683-0
Keywords: Totally real submanifolds, complex projective space, minimal submanifolds, Hopf fibration
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society