Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A note on a differential concomitant


Authors: P. R. Eiseman and A. P. Stone
Journal: Proc. Amer. Math. Soc. 53 (1975), 179-185
MSC: Primary 58A10
DOI: https://doi.org/10.1090/S0002-9939-1975-0383445-3
MathSciNet review: 0383445
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ {\mathbf{h}}$ and $ {\mathbf{k}}$ are vector $ 1$-fotms, the vanishing of the concomitant $ [{\mathbf{h}},\;{\mathbf{k}}]$ is an integrability condition fot certain problems on manifolds. In the case that $ {\mathbf{h}} = {\mathbf{k}}$ the vanishing of the Nijenhuis tensor $ [{\mathbf{h}},\;{\mathbf{h}}]$ implies $ d(\operatorname{tr} {\mathbf{h}})$ is a conservation law for $ {\mathbf{h}}$, provided that $ \operatorname{tr} {\mathbf{h}}$ is not constant. When the trace of $ {\mathbf{h}}$ is constant, a conservation law for $ {\mathbf{h}}$ exists if one can find a vector $ 1$-form $ {\mathbf{k}}$ with nonconstant trace such that $ [{\mathbf{h}},\;{\mathbf{k}}] = 0$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58A10

Retrieve articles in all journals with MSC: 58A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0383445-3
Keywords: Vector $ 1$-form, differential concomitant, differential form, conservation law
Article copyright: © Copyright 1975 American Mathematical Society