ABSTRACT. Recently the author [5] proved that \(\lambda \) connected continua \(X \) and \(Y \) are arc-like if and only if the topological product \(X \times Y \) is disk-like. Here we present an analogous theorem that generalizes the result of Fort [2] and Ganea [3] that disks are not torus-like. We prove that \(\lambda \) connected continua \(X \) and \(Y \) are circle-like if and only if \(X \times Y \) is torus-like.

We call a nondegenerate compact connected metric space a continuum. A map is a continuous single-valued function.

A continuum \(X \) is circle-like if for each positive number \(\epsilon \), there is an \(\epsilon \)-map (i.e., a map such that each point-preimage has diameter \(< \epsilon \)) of \(X \) onto a circle. Torus-like continua are defined in the same manner. Here a torus is the cartesian product of two circles.

A continuum is decomposable if it is the union of two proper subcontinua. A continuum is hereditarily decomposable if all of its subcontinua are decomposable. If each two points of a continuum \(X \) can be joined by a hereditarily decomposable subcontinuum of \(X \), then \(X \) is said to be \(\lambda \) connected.

A continuum \(Y \) is called a triod if it contains a subcontinuum \(Z \) such that \(Y - Z \) is the union of three nonempty disjoint open sets. When a continuum does not contain a triod, it is said to be atriodic.

A continuum is unicoherent provided that if it is the union of two subcontinua \(E \) and \(F \), then \(E \cap F \) is connected.

For any two metric spaces \((X, \psi)\) and \((Y, \phi)\), we shall always assume that the distance between two points \(p_1 = (x_1, y_1) \) and \(p_2 = (x_2, y_2) \) of the topological product \(X \times Y \) is defined by

\[
\rho(p_1, p_2) = ((\psi(x_1, x_2))^2 + (\phi(y_1, y_2))^2)^{1/2}.
\]

Theorem 1. Suppose that \(X \) and \(Y \) are \(\lambda \) connected continua and that \(X \times Y \) is torus-like. Then \(X \) is atriodic, every proper subcontinuum of \(X \) is unicoherent, and \(X \) is not unicoherent.

Proof. Let \(\psi \) and \(\phi \) be distance functions for \(X \) and \(Y \) respectively.

Received by the editors August 9, 1974 and, in revised form, September 20, 1974.

AMS (MOS) subject classifications (1970). Primary 54B10, 54C10, 54F20, 54F25, 54F65; Secondary 54B25, 54C05, 54F55, 54F60, 57A05.

Key words and phrases. Circle-like continua, torus-like product, \(\lambda \)-connected continua, hereditarily decomposable continua, triod, unicoherence, \(\epsilon \)-mappings onto a torus.

Copyright © 1975, American Mathematical Society
Define \(Y_1 \) and \(Y_2 \) to be disjoint subcontinua of \(Y \). Note that if \(\epsilon = \phi(Y_1, Y_2) \) and \(f \) is an \(\epsilon \)-map of \(X \times Y \) onto a torus, then either \(f[X \times Y_1] \) or \(f[X \times Y_2] \) can be embedded in a 2-sphere [8, Lemma 1]. It follows from paragraphs 2 through 4 in the proof of Theorem 1 in [5] that \(X \) is atriodic. By the argument presented in paragraphs 5 through 13 in the same proof, every proper subcontinuum of \(X \) is unicoherent. Note that \(Y \) is atriodic and every proper subcontinuum of \(Y \) is unicoherent.

Now suppose that \(X \) is unicoherent. By Theorem 2 of [5], \(X \) is hereditarily decomposable. Hence there is a monotone map \(g \) of \(X \) onto the unit interval \([0, 1]\) [1, Theorem 8]. Define \(\epsilon_1 \) to be the minimum of

\[
\|\psi(g^{-1}[[0, n/9]], g^{-1}[[n + 1)/9, 1]])\| n = 1, 2, \ldots, 7.
\]

Assume that \(Y \) is unicoherent. Then \(Y \) is hereditarily decomposable and there exists a monotone map \(h \) of \(Y \) onto \([0, 1]\).

Define \(\epsilon \) to be a positive number less than \(\epsilon_1, \phi(h^{-1}(0), h^{-1}[[1/3, 1]]), \phi(h^{-1}(1), h^{-1}[[0, 2/3]]), \phi(h^{-1}(0, 1/3), h^{-1}[[2/3, 1]]) \). Let \(f \) be an \(\epsilon \)-map of \(X \times Y \) onto a torus \(T \).

At least one of the disjoint continua \(f[g^{-1}[[0, 4/9]] \times Y] \) and \(f[g^{-1}[[5/9, 1]] \times Y] \) is lying in a planar connected open subset of \(T \). We assume without loss of generality that a planar connected open set \(S \) in \(T \) contains \(f[g^{-1}[[0, 4/9]] \times Y] \).

The continuum \(K = f[g^{-1}[[2/9, 1/3]] \times Y] \) separates \(L = f[g^{-1}(0) \times Y] \) from \(M = f[g^{-1}(4/9) \times Y] \) in \(T \). Hence \(K \) separates \(L \) from \(M \) in \(S \). Note that the intersection of

\[
f[g^{-1}[[2/9, 1/3]] \times h^{-1}[[0, 2/3]]] \quad \text{and} \quad f[g^{-1}[[2/9, 1/3]] \times h^{-1}[[1/3, 1]]]
\]

is the continuum \(f[g^{-1}[[2/9, 1/3]] \times h^{-1}[[1/3, 2/3]]] \). It follows from Janiszewski's theorem [7, Theorem 20, p. 173] that either

\[
E = f[g^{-1}[[2/9, 1/3]] \times h^{-1}[[0, 2/3]]]
\]

or \(f[g^{-1}[[2/9, 1/3]] \times h^{-1}[[1/3, 1]]] \) separates \(L \) from \(M \) in \(S \).

We assume without loss of generality that \(E \) separates \(L \) from \(M \) in \(S \). But \(f[g^{-1}[[0, 4/9]] \times h^{-1}(1)] \) is a continuum in \(S \) that meets both \(L \) and \(M \) and misses \(E \), a contradiction. Hence \(Y \) is not unicoherent.

According to Lemma 2 of [6], \(Y \) is not separated by any of its subcontinua. By Theorem 5 of [4], there exists a monotone map \(k \) of \(Y \) onto a circle \(C \).

Define \(Z_1, Z_2, Z_3, \) and \(Z_4 \) to be arcs whose interiors are pairwise disjoint such that \(C = \bigcup_{i=1}^{4} Z_i \) and \(Z_1 \cap Z_3 = \emptyset = Z_2 \cap Z_4 \). Let \(V_1, V_2, V_3, \) and \(V_4 \) be arcs in \(C \) such that \(V_1 \cap V_2 = \emptyset = V_2 \cap V_4 \), and for each integer \(i (1 \leq i \leq 4) \), the interior of \(V_i \) contains \(Z_i \).
Define \(\epsilon' \) to be a positive number less than \(\epsilon_1, \phi(k^{-1}[V_1], k^{-1}[V_3]), \phi(k^{-1}[V_2], k^{-1}[V_4]), \) and the minimum of \(\{\phi(k^{-1}[Z_i], k^{-1}[C - V_i])\} \) \(i = 1, 2, 3, \) and \(4 \). Let \(t \) be an \(\epsilon' \)-map of \(X \times Y \) onto the torus \(T \).

For each integer \(i (1 \leq i \leq 4) \) define \(A_i = t[X \times k^{-1}[V_i]] \). Note that \(T = \bigcup_{i=1}^{4} A_i \) and \(A_1 \cap A_3 = \emptyset = A_2 \cap A_4 \).

Using arcs in \(T \) that approximate each \(t[g^{-1}(0) \times k^{-1}[Z_i]] \), we define for each \(i (1 \leq i \leq 4) \) an arc \(\alpha_i \) in \(A_i \cap t[g^{-1}([0, 2/9]) \times Y] \) such that \(\alpha = \bigcup_{i=1}^{4} \alpha_i \) is a simple closed curve. By Fort's lemma \([2]\), there is a retraction \(r \) of \(T \) onto \(\alpha \). The torus \(T \) is not separated by \(\alpha \); for otherwise, \(r \) restricted to the closure of the planar component of \(T - \alpha \) would be a retraction of a disk onto its boundary, which is impossible. Note that \(\alpha \) lies in \(t[g^{-1}([0, 2/9]) \times Y] \).

In a similar manner, we define simple closed curves \(\beta \) and \(\gamma \) contained in \(B = t[g^{-1}([1/3, 2/3]) \times Y] \) and \(t[g^{-1}([7/9, 1]) \times Y] \), respectively, such that neither \(\beta \) nor \(\gamma \) separates \(T \).

Since \(\alpha, \beta, \) and \(\gamma \) are pairwise disjoint, \(T - (\alpha \cup \beta \cup \gamma) \) has three components. Let \(H \) be the component of \(T - (\alpha \cup \beta \cup \gamma) \) whose boundary is \(\alpha \cup \gamma \). Note that \(H \) does not meet \(\beta \).

Since \(B \) is a continuum in \(T \) that contains \(\beta \) and misses \(\alpha \cup \gamma \), \(B \) does not intersect \(H \). Thus \(H \) is contained in the union of disjoint continua

\[A = t[g^{-1}([0, 1/3]) \times Y] \quad \text{and} \quad G = t[g^{-1}([2/3, 1]) \times Y]. \]

Since \(\alpha \) and \(\gamma \) lie in \(A \) and \(G \), respectively, it follows that \(H \) meets both \(A \) and \(G \). But this implies that \(H \) is not connected, a contradiction. Hence \(X \) is not unicoherent.

Theorem 2. Suppose that \(X \) and \(Y \) are \(\lambda \)-connected continua. Then \(X \) and \(Y \) are circle-like if and only if \(X \times Y \) is torus-like.

Proof. If \(X \times Y \) is torus-like, then \(X \) and \(Y \) are both atriodic nonunicoherent \(\lambda \)-connected continua with the property that every proper subcontinuum is unicoherent (Theorem 1). It follows from Theorem 2 of \([6]\) that \(X \) and \(Y \) are circle-like.

To see that the torus-like product condition is also necessary, note that if \(f \) is an \(\epsilon/2 \)-map of \(X \) onto a circle \(C \) and \(g \) is an \(\epsilon/2 \)-map of \(Y \) onto \(C \), then the function \(h \) of \(X \times Y \) onto the torus \(C \times C \) defined by \(h((x, y)) = (f(x), g(y)) \) is an \(\epsilon \)-map.

Question. Must continua \(X \) and \(Y \) (not necessarily \(\lambda \) connected) be circle-like when \(X \times Y \) is torus-like?

The author gratefully acknowledges conversations about the topics of this paper with R. W. Fitzgerald and F. B. Jones.

REFERENCES

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO, CALIFORNIA 95819