Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Torus-like products of $ \lambda $ connected continua


Author: Charles L. Hagopian
Journal: Proc. Amer. Math. Soc. 53 (1975), 227-230
MSC: Primary 54F20
DOI: https://doi.org/10.1090/S0002-9939-1975-0385818-1
MathSciNet review: 0385818
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently the author [5] proved that $ \lambda $ connected continua $ X$ and $ Y$ are arc-like if and only if the topological product $ X \times Y$ is disklike. Here we present an analogous theorem that generalizes the result of Fort [2] and Ganea [3] that disks are not torus-like. We prove that $ \lambda $ connected continua $ X$ and $ Y$ are circle-like if and only if $ X \times Y$ is torus-like.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663. MR 13, 265. MR 0043450 (13:265a)
  • [2] M. K. Fort, Jr., $ \epsilon $-mappings of a disc onto a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 51-54. MR 21 #325. MR 0101515 (21:325)
  • [3] T. Ganea, On $ \epsilon $-maps onto manifolds, Fund. Math. 47 (1959), 35-44. MR 21 #4427. MR 0105691 (21:4427)
  • [4] C. L. Hagopian, $ \lambda $ connectivity and mappings onto a chainable indecomposable continuum, Proc. Amer. Math. Soc. 45 (1974), 132-136. MR 0341434 (49:6185)
  • [5] -, Disk-like products of $ \lambda $ connected continua. I, Proc. Amer. Math. Soc. 51 (1975), 448-452. MR 0375255 (51:11451)
  • [6] -, Disk-like products of $ \lambda $ connected continua. II, Proc. Amer. Math. Soc. 52 (1975), 479-484. MR 0494000 (58:12943)
  • [7] R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 #709. MR 0150722 (27:709)
  • [8] J. H. Roberts and N. E. Steenrod, Monotone transformations of two-dimensional manifolds, Ann. of Math. 39 (1938), 851-863. MR 1503441

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20

Retrieve articles in all journals with MSC: 54F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0385818-1
Keywords: Circle-like continua, torus-like product, lambda connected continua, hereditarily decomposable continua, triod, unicoherence, $ \epsilon $-mappings onto a torus
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society