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POWER-ASSOCIATIVITY OF ANTIFLEXIBLE RINGS

HASAN A. CELIK AND DAVID L. OUTCALT

ABSTRACT. Conditions which force an antiflexible ring of character-

istic p to be power-associative are determined.

1. Introduction. We prove that antiflexible rings are always mth power-
associative except when m = p* for r € Z*, where the prime p > 2 is the
characteristic of R. It is proved that R is power-associative provided there
exist some 7, j €41, 2, ..., p" = 1} such that (|i-j|, p) =1 and x0Tyt o
xP"=ixJ for r € R and r € Z*. We show that this condition may not be omitted
by constructing a family of antiflexible rings such that x""1x = 0 but xx?™!
# 0. In particular, it is possible to construct antiflexible rings with elements

which are right nilpotent but not left nilpotent.

2. Preliminaries. A ring is antiflexible provided

(2.1) (x, y, 2) = (2, y, %)
for all x, y, z in the ring where the associator (4, b, c) is defined by (g, b, 0
= (ab)c — dbc). Let x be an element of a ring. We define x” for all positive

integers n by

(2.2) x1=x; PLIEY e P k=2,3,4,....

A ring is mth power-associative provided

(2.3) (x% %, x®) = 0

for all x in the ring and for all positive integers i, j, & suchthat i+ j+ &k

< m, m a positive integer. This is equivalent to saying that x4 = xix7 for
all 7, j such that i+ j< m. A ring is power-associative provided it is mth
power-associative for every positive integer m. The following two identities
hold in any ring:

(2.4)  (wx, y, 2) - (w, xy, 2) + (w, x, y2) = wlx, y, 2) + (w, x, )z,

(2.5) [xy, 2] = xly, z] =[x, 2ly = (x, y, 2) = (x, 2z, y) + (2, x, )

where the commutator [a, b] is defined by [a, b] = ab - ba.
Let k be a positive integer. If a ring is of characteristic &, then kx=0
for all x in the ring, and if » is prime to k, then nx = 0 implies x =0 for x

in the ring; and if a ring is of characteristic zero, then nx = 0 implies x =0
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for every positive integer 7 and for x in the ring.
From here on, R will denote an antiflexible ring of characteristic prime

to 2 which is also third power-associative. Hence

(2.6) (x, x, x) =0
for all x € R. Linearization of (2.6) yields
(2.7) (x, 9, 2+ (y, 2z, 0) + (2, x,y)=0

upon application of (2.1) and the fact that R is of characteristic prime to 2.

Subtracting (2.7) from (2.5) and using (2.1), we obtain

(2.8) [xy, z] = xly, 2] =[x, zly = - 2x, 2, y).
Set y=x or z= xZ in (2.8). Then (x, x2, ¥) =0 and hence
(2.9) (x, x2, x) = 0=(x2 x, x)

from (2.7) with y =x and z = x2 and (2.1). Therefore, R is 4th power-asso-
ciative as was first established by Kosier in [3]. Thus, as Kosier observed,
it follows from a theorem of Albert [1] that if R is of characteristic O then R
is power-associative. On the other hand, Rodabaugh published an example
[5] showing that if R is not of characteristic 0 then R need not be power-
associative. Theorems of power-associativity of arbitrary rings and algebras
have appeared in Albert [1], Kokoris [2], Leadley and Richie [4].

3. Main section. We make use of the following result of Albert [1].
Lemma 1. Let the characteristic of a ring A be prime to two, n > 4,
AxH = xAH for N+ p<n Then
alx?=1 k] =0, k"% x%1=alx”" L %], aefl,...,n-1}

so that, if n is prime to the characteristic of A, we have x"~%x%* = x%x™

for a€fl, 2,...,n—1}

a

Recall that by R we always mean an antiflexible ring of characteristic
prime to 2 which is also third power-associative. By Rlx] we mean the sub-

ring of R generated by x € R.

Lemma 2. If [x™"1, x] =0, then R[x] is mth power-associative provided

R[x] is (m — 1)st power-associative.

Proof. Using (2.8),
0= [x"’"l, x] = [xm = 1=ixi x] = —2(xm =11 &, xP)

= 2Tyl gy Lo dgi ]
Hence,
(3.1) XM iyt o gm e ImiyH] 1<i<m-2,
which implies that x™~kxk = x™ forall 1 <k<m—1 and hence R[x] is

mth power-associative.
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Lemma 3. For and m € Z%, if Rlx] is (m— 1)st power-associative then
(3.2) G+ Dx™=22""x 4 (i - Dxx™"1,  1<i<m- 1.

Proof. We establish the identity by induction. i =1 case is true by de-

finition. Suppose that the identity holds for i =k — 1. Then
a1 (ym—k k= ly o omekik | (gem—k=1 o k=1y m-kk

since R[x] .is (m - 1)st power-associative. By (2.4), we obtain, using (2.1)
and (2.7),

Gexm=k=1 o, k=) = (xR xR (x, xR R

= —(xmk g, xRl (R xR ) (x, xR xR)

_ _xm—k"’lxk—l + xm-kxk _xm=ly n xm—kyk _  m—kyk + xxm—l'

Thus,

Xkl m-ktl k=1 gym=kek m y gxm=1
or
(3.3) am—ktl k=1 _ gym—kyk _ m  m=1

By the induction hypothesis,
ka™ o= 2R k=1 (p )yl Rk _m L (h _ D)xx™ !
using (3.3), hence

(k + Dx™ = 2x™~*xk o (b = Dxx™" 1.

Theorem 1. Let the characteristic of R be a prime p. Then R is pth
power-associative if and only if for all x € R there exists some i, j € {1, 2,

L, p=1}, i# | such that xP it oy Piyd,

Proof. One direction is obvious. Assume that x?~ix!= x?=7xJ for some
i,j€fl,2,...,p~-1}, i# j. By Lemma 1, R is (p — 1)st power-associative.
Then we may use (3.2):

G+ DxP = 2xP 77 4 (i = Dxxb ™Y (G4 Da? = 262 77x7 4 (j = Dxxf~ L,

Subtraction yields (i — )x? = (i — j)xx?~! since x?~ixi= xP=ix, However,
li-j| ell, 2,..., p-1}, hence x? = xx?~!, Thus R is pth power-associa-

tive by Lemma 2.

Theorem 2. Let the characteristic of R be a prime p> 2. Then R is
power-associative if and only if for every x € R, x? ~ixi = xb =ixi for all
r€Z* and for some i, j€{l,2, ..., p" =1} with (|i—j|, p) = 1.

Proof. The case r=1 yields that R is pth power-associative. Since

any integer m between tp and (t+ 1)p for t € Z* is relatively prime to p,
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Lemma 1 implies that R is mth power-associative providing R is tpth power-
associative.

Next, we establish that R is Ipth power-associative for /€{1,2,...,
p - 1} Using induction on I, we may assume that R is (/- 1)pth power-

associative. Hence R is also (/p — 1)th power-associative. So, for all x €R,

we have
Xlo=1) _ o=l _ (yhp-1,
Therefore,
wlbo =Ll _ 10 =Dyl _ (D)ol _ I D)o-1 = xIxlp =1,
hence [x'?~% x!] = 0. Now Lemma 1 yields the claim.

We may now assume that R is (p” — 1)th power-associative and prove
that it is p"th power-associative. Let 7, j €{1, ..., p" = 1} with i # ; and
T . . ro. .
(li=jl, P =1, and x? ~*x* = x? ~Ix7, Using (3.2),

r .. 7
(i + DxP = 2% ixi 4 (i = Dxxb ~ L
r r . . r
(G + DxP = 2x? ~ixd 4 (j = Dxx? ~!

which yield xt" = xx? =1, This completes the proof.

We close with an example to show that Theorem 2 is the best possible
for antiflexible rings. Rodabaugh’s example [5] shows that there exist third
power-associative, antiflexible rings of characteristic p, p an odd prime,
which are not pth power-associative. Our example goes one step further. It
shows that if R is of characteristic p, p a prime, then it is possible for
x0=ix? = 0 for some i while x?~/x/ # 0 for all j # i. Furthermore, the ex-
ample provides antiflexible algebras of dimension p”, for 7 € Z+, which are
not p'th power-associative and which contain elements which are right nilpo-
tent but not left nilpotent.

Example. Let F be a field of characteristic p >3, p a prime. Let Bp(a)
be the p’th dimensional algebra over F with basis 1, x, x2 ..., xp"l,

where 7 € Z¥ and

(1) xkxlzxk+l if 25k+ lfP'— 1,
(2) ! oY1 -Da, aeF,at0, if kl=p,

() xkxl 2 Yaxktioel i k+1>p",  klell 2, ..., p" -1k

Observe that x? = 0, and xx? "1 = a # 0.
To show that Bp(a) is a third power-associative antiflexible algebra

one should verify that
(3.4) (xk, xI, x™) = (x™, x, xk) forall k, I, m € {1,2,..., p" - 1}
It is immediate that (x*, x*, x*) =0 for all k£ €fl1,2, ..., p" - 1} since
p > 3. Identity (3.4) includes combinations of the following cases:
(i) k+l+m=pT



POWER-ASSOCIATIVITY OF ANTIFLEXIBLE RINGS 23

(i) k+Il=p", I+ m=p", k+ m=p";
(i) b+ I>p I+ m>ps k+m>pTs b+ l+m=2p", k+ [+ m<2p,
k+1l+m>2p,

We illustrate one typical case:

k+I>p" and k+l+m=2p", xkxl=1/2axk*1-ﬁr,

(xkxD)x™ = 1/zax"””"rx"’ =Y%al(l-m/Da=Y%aX1-m),

T
F(x!x™) = xRS ax!*™=P) since I+ m>p7,

]

YBal(l-1-m+p)/da = a1+ k),
(xmxl)xk = "/2ax’””"’rx’z =Y%al(l-k)/Da=%aXl-5),

x™(x!xk) = x™(%4 axlte-pTy Yoal(l-1-k-pN/Da= Y%a (1 + m).
Thus,
(k, xh, 2™y = (7, kL, xF) = Yol [(1-m) = (1+ k) = (1= k) + (1 + m] =0,

(3.4) can similarly be verified for all cases of (i), (ii), and (iii).
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