Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On decomposability of compact perturbations of operators


Author: M. Radjabalipour
Journal: Proc. Amer. Math. Soc. 53 (1975), 159-164
MSC: Primary 47B40; Secondary 47A15
DOI: https://doi.org/10.1090/S0002-9939-1975-0407650-2
MathSciNet review: 0407650
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a Hilbert-space operator satisfying the growth condition $ \vert\vert{(z - A)^{ - 1}}\vert\vert \leqslant \exp \{ K{[\operatorname{dist} (z,\;J)]^{ - S}}\} ,\;z \notin J$, where $ J$ is a $ {C^2}$ Jordan curve, and $ K > 0,\;s\epsilon (0,\;1)$ are two constants. Let $ T = A + B$ for some $ B\epsilon {C_p},\;1 \leqslant p < \infty $. It is shown that $ T$ is strongly decomposable if and only if $ \sigma (T)$ does not fill the ``interior'' of $ J$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B40, 47A15

Retrieve articles in all journals with MSC: 47B40, 47A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0407650-2
Keywords: Hilbert space, bounded operator, invariant subspace, growth condition, compact operator
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society