A CLOSED GRAPH THEOREM

S. O. IYAHEN

ABSTRACT. A closed graph theorem is proved, implying that a Hausdorff locally convex space E need not be barrelled if every closed linear map from E into F is continuous, where F is a reflexive Fréchet or LF-space or a space of distributions.

A Hausdorff locally convex space (E, τ) is barrelled if and only if for each Banach space (F, ξ), a closed linear map from (E, τ) into (F, ξ) is necessarily continuous. This result of M. Mahowald [2, Theorem 2.2] is shown here (Corollary) to be false if instead (F, ξ) is a reflexive Fréchet or LF-space.

Theorem. Let (E, τ) be a Hausdorff locally convex space. Suppose that for a family $(S_a)_{a \in \Phi}$ of absolutely convex compact subsets, there is no locally convex topology on E strictly finer than τ which coincides with τ on each S_a. Let (F, ξ) be a Hausdorff locally convex space in which every closed bounded set is compact. If every closed linear map from any Banach space into (F, ξ) is bounded, then a closed linear map f from (E, τ) into (F, ξ) is necessarily continuous.

Proof. Let E_a denote the linear span of S_a, and τ_a the τ-induced topology on E_a. Let η_a denote the Banach space topology on E_a with the sequence $(S_a/n)_{n=1}^{\infty}$ of sets as a base of neighborhoods of the origin.

As the graph of the restriction map of f to E_a is closed in $(E_a, \tau_a) \times (F, \xi)$, it is necessarily closed in $(E_a, \eta_a) \times (F, \xi)$ since η_a is finer than τ_a. By the hypothesis then, the closure T_a of $f(S_a)$ in (F, ξ) is compact. The graph G_a of the restriction map f_a of f to S_a is closed in the compact Hausdorff space $X_a = S_a \times T_a$, where S_a, T_a are considered under the τ- and ξ-induced topologies, respectively.

Let P_{S_a}, P_{T_a} be the projection maps of X_a onto S_a, T_a respectively, and P_{G_a} the restriction of P_{S_a} to G_a. As P_{G_a} is continuous and one-to-one, it is necessarily a homeomorphism, since G is compact. Therefore each map $f_a = P_{T_a} \circ P_{G_a}^{-1}: S_a \rightarrow (F, \xi)$ is continuous. This implies that $f: (E, \tau) \rightarrow (F, \xi)$ is continuous.

In the Theorem, (E, τ) could be the dual of any complete Hausdorff locally convex space under the topology of compact convergence [1, p. 16,
Example B], and \((F, \xi)\) could be any Montel Fréchet or LF-space or any of the distribution spaces \(\mathcal{E}, \mathcal{E}', \mathcal{D}, \mathcal{D}', \mathcal{J}, \mathcal{J}', \mathcal{O}_M, \mathcal{O}_M', \mathcal{O}_c, \mathcal{O}_c'\) by [3].

Corollary. Let \((E, \tau)\) be the dual of a complete Hausdorff locally convex space under the Mackey topology \(\tau\). If \((F, \xi)\) is a reflexive Fréchet or LF-space or any of the distribution spaces above, then any closed linear map \(f\) from \((E, \tau)\) into \((F, \xi)\) is necessarily continuous.

Proof. Let \(\tau_1\) denote the topology on \(E\) of compact convergence and \(\xi_0\) the weak topology on \(F\) associated with \(\xi\). The graph of \(f\) is necessarily closed in \((E, \tau_1) \times (F, \xi_0)\), and by the Theorem then \(f: (E, \tau_1) \to (F, \xi_0)\) is continuous. This implies that \(f: (E, \tau) \to (F, \xi)\) is continuous.

REFERENCES