Conjugate algebraic integers in an interval

Author:
Veikko Ennola

Journal:
Proc. Amer. Math. Soc. **53** (1975), 259-261

MSC:
Primary 12A15

DOI:
https://doi.org/10.1090/S0002-9939-1975-0382219-7

MathSciNet review:
0382219

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following conjecture of R. M. Robinson is proved. If is a real interval of length greater than , then for any sufficiently large there exists an irreducible monic polynomial of degree with integer coefficients all of whose zeros lie in .

**[1]**Władysław Narkiewicz,*Elementary and analytic theory of algebraic numbers*, PWN—Polish Scientific Publishers, Warsaw, 1974. Monografie Matematyczne, Tom 57. MR**0347767****[2]**Raphael M. Robinson,*Intervals containing infinitely many sets of conjugate algebraic integers*, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 305–315. MR**0144892**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
12A15

Retrieve articles in all journals with MSC: 12A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1975-0382219-7

Article copyright:
© Copyright 1975
American Mathematical Society