ON A PROBLEM OF J. L. TAYLOR
KEIJI IZUCHI

ABSTRACT. Let S be the structure semigroup of a measure algebra $M(G)$ and K be the union of all maximal groups of S. Taylor proposed the following problem: Are there L. C. A. groups G with nontrivial measures concentrated on K? The purpose of this paper is to give a positive solution to this problem.

Let G be a locally compact abelian group with dual group \hat{G}. We denote by $M(G)$ the Banach algebra of all bounded regular Borel measures on G under convolution multiplication and total variation norm. In [2], Taylor showed that there is a compact topological semigroup S, called the structure semigroup of $M(G)$, and an order preserving isometry-isomorphism θ of $M(G)$ into $M(S)$ such that:

1. $\theta(M(G))$ is a weak*-dense L-subalgebra of $M(S)$;
2. the maximal ideal space of $M(G)$ is identified with \hat{S}, the set of all continuous semicharacters on S, and the Gel'fand transform of $\mu \in M(G)$ is given by $\hat{\mu}(f) = \int S f d\mu$ for $f \in \hat{S}$. $\{\hat{\mu}(f); f \in \hat{S}\}$ is called the spectrum of μ.

μ is called symmetric if $\hat{\mu^*}(f) = \hat{\mu}(f)$ for every $f \in \hat{S}$. Let K be the union of all maximal groups $\{K_p\}_{p \in P}$ of S. Then $K = \{x \in S; |f(x)| = 1 \text{ or } 0 \text{ for every } f \in \hat{S}\}$.

Definition. Let $M_K(G)$ be the set of all $\mu \in M(G)$ such that $\theta\mu$ is concentrated on K but $\theta|\mu|(K_p) = 0$ for every $p \in P$.

In [3], Taylor proposes the following problem concerning $M_K(G)$.

Problem. Are there L.C.A. groups G for which $M_K(G) \neq 0$?

The purpose of this paper is to show the existence of a L.C.A. group G such that $M_K(G) \neq 0$. The following is our main

Theorem. Let \overline{R} be the Bohr compactification of the real line R. Then there exists nonzero $\mu \in M_K(\overline{R})$ so that μ is a positive symmetric measure and the spectrum of μ is a countable set.

We put $\Lambda_n = \{(\alpha_0, \alpha_1, \ldots, \alpha_n); \alpha_0 = 0, \alpha_i = 0 \text{ or } 1 (i = 1, 2, \ldots, n)\}$ $(n = 0, 1, 2, \ldots)$ and $\Lambda = \bigcup_{n=0}^{\infty} \Lambda_n$. For $\alpha \in \Lambda$, we put $|\alpha| = n$ if $\alpha \in \Lambda_n$.

Lemma 1. There exists a countable family $\{E_\alpha\}_{\alpha \in \Lambda}$ such that E_α is a
subset of \(R (\alpha \in \Lambda) \) satisfying the following conditions:

1. \(E_{\alpha} \subseteq E_{\alpha,0} \) and \(E_{\alpha} \subseteq E_{\alpha,1} \) for \(\alpha \in \Lambda \);
2. \(E_{\alpha,0} \setminus E_{\alpha} \neq \emptyset \) and \(E_{\alpha,1} \setminus E_{\alpha} \neq \emptyset \) for \(\alpha \in \Lambda \);
3. for \(\alpha, \beta \in \Lambda \), \(E_{\alpha} \cap E_{\beta} = E_{\alpha,0,\alpha_1,\ldots,\alpha_j} \) if \(\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j \) and \(\alpha_{j+1} \neq \beta_{j+1} \);
4. \(\bigcup_{\alpha \in \Lambda} E_{\alpha} \) is an independent set.

Proof. Since \(R \) contains an infinite independent set, it is easy to construct such a family.

We denote by \(H_{\alpha} \) the subgroup of \(R \) generated by \(E_{\alpha} (\alpha \in \Lambda) \). The following lemma is clear by Lemma 1.

Lemma 2. The countable family \(\{ H_{\alpha} \}_{\alpha \in \Lambda} \) has the following properties:

1. \(H_{\alpha} \subseteq H_{\alpha,0} \) and \(H_{\alpha} \subseteq H_{\alpha,1} \) for \(\alpha \in \Lambda \);
2. \(H_{\alpha,0}/H_{\alpha} \) and \(H_{\alpha,1}/H_{\alpha} \) are infinite subgroups for \(\alpha \in \Lambda \);
3. for \(\alpha, \beta \in \Lambda \), \(H_{\alpha} \cap H_{\beta} = H_{\alpha,0,\alpha_1,\ldots,\alpha_j} \) if \(\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j \) and \(\alpha_{j+1} \neq \beta_{j+1} \).

Let \(G_{\alpha} \) be the annihilator in \(\overline{R} \) of \(H_{\alpha} (\alpha \in \Lambda) \). We put \(G_{\alpha} + G_{\beta} = \{ x + y; x \in G_{\alpha}, y \in G_{\beta} \} \); then \(G_{\alpha} + G_{\beta} \) is a compact subgroup. The following lemma is clear by Lemma 2.

Lemma 3. \(\{ G_{\alpha} \}_{\alpha \in \Lambda} \) is a family of compact subgroups of \(\overline{R} \) and has the following properties:

1. \(G_{\alpha} \supseteq G_{\alpha,0} \) and \(G_{\alpha} \supseteq G_{\alpha,1} \) for \(\alpha \in \Lambda \);
2. \(G_{\alpha,0}/G_{\alpha} \) and \(G_{\alpha,1}/G_{\alpha} \) are compact infinite groups for \(\alpha \in \Lambda \);
3. for \(\alpha, \beta \in \Lambda \), \(G_{\alpha} + G_{\beta} = G_{\alpha,0,\alpha_1,\ldots,\alpha_j} \) if \(\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j \) and \(\alpha_{j+1} \neq \beta_{j+1} \).

For a compact subgroup \(X \subset \overline{R} \), we denote by \(m_X \) the normalized Haar measure on \(X \). We can consider \(m_X \in \mathcal{M}(\overline{R}) \). We put \(\mu_n = (\frac{1}{2})^n \sum_{\alpha \in \Lambda} m_{G_{\alpha}} \) \((n = 0, 1, \ldots) \). Then \(\mu_n \in \mathcal{M}(\overline{R}), \mu_n \geq 0 \) and \(\| \mu_n \| = 1 \). For \(\mu \in \mathcal{M}(\overline{R}) \), we denote by \(\widehat{\mu} \) the Fourier-Stieltjes transform of \(\mu \). By the definition of \(\{ \mu_n \}_{n=0}^{\infty} \) and Lemma 2, we get

Lemma 4. \(\{ \mu_n \}_{n=0}^{\infty} \) has the following properties:

1. If \(\gamma \in H_0 \), then \(\hat{\mu}_n(\gamma) = 1 \) for \(n = 0, 1, 2, \ldots \);
2. if \(\gamma \in H_{\alpha,0,a_1,\ldots,a_{k-1}} \setminus H_{\alpha,0,a_1,\ldots,a_{k-1}} \), then \(\hat{\mu}_n(\gamma) = (\frac{1}{2})^k \) for \(n \geq k \) and \(\mu_n(\gamma) = 0 \) for \(n < k \);
3. if \(\gamma \in R \setminus H_{\alpha} \) for every \(\alpha \in \Lambda \), then \(\hat{\mu}_n(\gamma) = 0 \), \(n = 0, 1, 2, \ldots \).

By Lemma 4, \(\{ \mu_n \}_{n=0}^{\infty} \) has only one weak*-cluster point \(\mu \) in \(\mathcal{M}(\overline{R}) \) and has the following properties.

Lemma 5. \(\begin{array}{l}
1. \mu \in \mathcal{M}(\overline{R}), \mu \geq 0 \text{ and } \| \mu \| = 1; \\
2. \text{if } \gamma \in H_0 \text{ then } \hat{\mu}(\gamma) = 1. \\
\end{array} \)
(3) if \(\gamma \in \mathcal{H}_{a_0, a_1, \ldots, a_{k-1}, a_k} \), then \(\hat{\mu}(\gamma) = (\gamma')^k \);
(4) if \(\gamma \in \mathbb{R} \setminus H_a \) for every \(a \in \Lambda \), then \(\hat{\mu}(\gamma) = 0 \).

For \(a \in \Lambda \), we put \(\Lambda_n^a = \{ \beta \in \Lambda_n; \alpha_0 = \beta_0, \ldots, a|a| = \beta|a| \} \) for \(n \geq |a| \)
and \(\Lambda_n^a = \bigcup_{n>|a|} \Lambda_n^a \). We put \(\mu_n^a = \sum_{\beta \in \Lambda_n^a} (\gamma')^n m_{\beta} \) for \(n \geq |a| \). Then \(\mu_n^a \geq 0 \), \(\|\mu_n^a\| = (\gamma')^{|a|} \) and \(\mu_{n+|a|}^a = |a| \) has only one weak*-cluster point \(\mu^a \) in \(M(\mathbb{R}) \), and \(\mu_{n+|a|}^a \) has the following properties.

Lemma 6.
(1) \(\mu_n^a = \sum_{\beta \in \Lambda_n^a} \mu_{|a|}^a \);
(2) if \(\gamma \in H_a \), then \(\hat{\mu}_n^a(\gamma) = (\gamma')^{|a|} \);
(3) for \(\gamma \in \mathbb{R}^\alpha \), \(\mu_n^a \) has the following properties.

- if \(\beta \in \Lambda_n^a \), \(\hat{\mu}_n^a(\gamma) = (\gamma')^k \) if \((\beta, \beta_1, \ldots, \beta_k) \in \Lambda_n^a \),
- \(\hat{\mu}_n^a(\gamma) = 0 \) if \((\beta, \beta_1, \ldots, \beta_k) \notin \Lambda_n^a \),
(4) if \(\gamma \in \mathbb{R} \setminus H_a \) for every \(a \in \Lambda \), then \(\hat{\mu}_n^a(\gamma) = 0 \).

For a compact subgroup \(X \subset \mathbb{R} \), there exists the strongest L.C.A. group topology on \(\mathbb{R} \) such that \(X \) is an open compact subgroup of \(\mathbb{R} \). We denote by \(\mathbb{R}_X \) the resulting L.C.A. topological group. We may consider \(M(\mathbb{R}_X) \subset M(\mathbb{R}) \). For \(\lambda_1, \lambda_2 \in M(\mathbb{R}) \), we denote by \(\lambda_1 \perp \lambda_2 \) if \(\lambda_1 \) is mutually singular with \(\lambda_2 \). For \(\lambda \in M(\mathbb{R}) \) and a subset \(N \subset M(\mathbb{R}) \), we denote by \(\lambda \perp N \) if \(\lambda \perp \nu \) for every \(\nu \in N \).

Lemma 7.
(1) \(\mu = \sum_{\alpha \in \Lambda_k} \mu^\alpha \) for every positive integer \(k \);
(2) \(\mu^a \in M(\mathbb{R}_{G_a}) \), and \(\mu^\beta \perp M(\mathbb{R}_{G_a}) \) for \(\beta \neq a, |\beta| = |a| \);
(3) \(\alpha \neq \beta \),
\[
\mu^\alpha \star \mu^\beta = (\gamma')^{|a|} (\gamma')^{|\beta|} m_{G_a} \alpha_{a_0, a_1, \ldots, a_j}
\]
if \(\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j \) and \(\alpha_{j+1} \neq \beta_{j+1} \).

Proof. By (3) of Lemmas 2, 5, and 6, we have \(\hat{\mu} = \sum_{\alpha \in \Lambda_k} \hat{\mu}^\alpha \) for every integer \(k \), that is \(\mu = \sum_{\alpha \in \Lambda_k} \mu^\alpha \). For \(\alpha \neq \beta \) such that \(\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j \) and \(\alpha_{j+1} \neq \beta_{j+1} \), we have \(\hat{\mu}^\alpha \star \hat{\mu}^\beta(\gamma) = \hat{\mu}^\alpha(\gamma) \hat{\mu}^\beta(\gamma) = (\gamma')^{|a|} (\gamma')^{|\beta|} \) if \(\gamma \in \mathcal{H}_{a_0, \ldots, a_j} \),
\[
= 0
\]
if \(\gamma \notin \mathcal{H}_{a_0, \ldots, a_j} \).

by (3) of Lemmas 2 and 6. This shows that
\[
\mu^\alpha \star \mu^\beta = (\gamma')^{|a|} (\gamma')^{|\beta|} m_{G_a} \alpha_{a_0, a_1, \ldots, a_j}.
\]
Let \(\phi \) be a canonical homomorphism of \(\mathbb{R} \) onto \(\mathbb{R}/G_a \), and for \(\lambda \in M(\mathbb{R}) \) we put \(\hat{\lambda}(E) = \hat{\lambda}(\phi^{-1}(E)) \) for every Borel set \(E \) of \(\mathbb{R}/G_a \). Then \(\hat{\lambda} \in M(\mathbb{R}/G_a) \) and
\[\lambda(y \circ \phi) = \lambda(y) \quad \text{for} \quad y \in \overline{R/G_a} = H_a. \] If \(y \in H_a \) (\((\alpha_0, \alpha_1, \ldots, \alpha_k) \)) then \(y \in H_{\alpha_0, \alpha_1, \ldots, \alpha_j} \neq \emptyset \) for some \(0 \leq j \leq k \) and \(\hat{\lambda}(y) = (1/2)^j \) by (3) of Lemma 5. Then we have

\[\mu = \frac{1}{2} m_{D_{\alpha_0}} \cdot (\frac{1}{2})^2 m_{D_{a_1}} \cdot \cdots \cdot (\frac{1}{2})^k m_{D_{a_{j-1}}} \cdot (\frac{1}{2})^k \delta_0, \]

where \(D_{\alpha_0, \alpha_1, \ldots, \alpha_j} \) is the annihilator in \(\overline{R/G_a} \) of \(H_{\alpha_0, \alpha_1, \ldots, \alpha_j} \subset H_a \)
\(m_{D_{\alpha_0, \alpha_1, \ldots, \alpha_j}} \) is the normalized Haar measure on \(D_{\alpha_0, \alpha_1, \ldots, \alpha_j} \) and \(\delta_0 \) is the point measure at \(0 \in \overline{R/G_a} \). Since \(H_a/H_{\alpha_0, \alpha_1, \ldots, \alpha_j} \) is an infinite group, \(m_{D_{\alpha_0, \alpha_1, \ldots, \alpha_j}} \) is a continuous measure on \(\overline{R/G_a} \). Since \(\mu_n (n \geq |\alpha|) \) is concentrated on \(G_a, \mu^\alpha \) is concentrated on \(G_a \) and \(\mu^\alpha = (\frac{1}{2})^k \delta_0 \). Thus
\[\Sigma_{\beta \neq \alpha} \mu^\beta \mu^\alpha \] is a continuous measure on \(\overline{R/G_a} \) and we have \(\mu^\alpha \in M(\overline{R/G_a}) \) and \(\mu^\beta \perp M(\overline{R/G_a}) \) for \(\beta \neq \alpha \) and \(|\beta| = |\alpha| \).

Remark. By (2) of Lemma 7, \(\mu^\alpha \perp \mu^\beta \) if \(\alpha \neq \beta \) and \(|\alpha| = |\beta| \).

By Lemma 7, we have

Proposition 1. \(\theta \mu(K_p) = 0 \) for every maximal group \(K_p \) of \(S \).

Proof. Suppose \(\theta \mu(K_p) \neq 0 \) for a maximal group \(K_p \) of \(S \). Then there is a positive integer \(n \) such that \((\frac{1}{2})^n < \theta \mu(K_p) \). By (1) of Lemma 7, there is \(\alpha \in \Lambda_n \) such that \(\theta \mu^\alpha(K_p) \neq 0 \). By (2) of Lemma 7, we have \(\theta \mu^\beta(K_p) = 0 \) for every \(\beta \in \Lambda_n (\beta \neq \alpha) \). So we have \(\theta \mu(K_p) = \theta \mu^\alpha(K_p) \leq \|\mu^\alpha\| = (\frac{1}{2})^n \), a contradiction.

For \(f \in \hat{S} \) and \(f^2 = f \), we put \(S_0(f) = \{ x \in S ; f(x) = 0 \} \), \(S_1(f) = \{ x \in S ; f(x) = 1 \} \), and \(M(S_1(f)) = \{ \mu \in M(R); \theta \mu \text{ is concentrated on } S_j(f) \} \) (\(j = 0, 1 \)). Then \(M(S_1(f)) \) is an L-ideal of \(M(\overline{R}) \) and \(M(S_1(f)) \) is an L-subalgebra [2].

Lemma 8. Let \(f \in \hat{S} \) such that \(f^2 = f \) and \(\hat{\mu}(f) \neq 0 \). Then there exists \(\alpha \in \Lambda \) such that:

1. \(\mu^\alpha \in M(S_1(f)) \);
2. \(\mu^\beta \in M(S_0(f)) \) for \(\beta \neq \alpha \) and \(|\beta| = |\alpha| \).

Proof. Since \(\hat{\mu}(f) \neq 0 \), we can decompose \(\mu = \lambda_1 + \lambda_2 \) (\(\lambda_2 \neq 0 \)), where \(\lambda_1 \in M(S_1(f)) \) and \(\lambda_2 \in M(S_0(f)) \). Suppose that \(\mu_n \in M(S_0(f)) \) for every integer \(n \). For some integer \(n_0 \) such that \((\frac{1}{2})^{n_0} < \|\lambda_2\| \), there exists \(\chi, \nu \in \Lambda_{n_0} \) such that \(\mu^\chi \neq \lambda_2 \) and \(\mu^\nu \neq \lambda_2 \). Because, \(\mu^\chi \mu^\nu \) for \(\chi, \nu \in \Lambda_{n_0} \) and \(\chi \neq \nu \), by the remark of Lemma 7, and \(\|\mu^\chi\| = (\frac{1}{2})^{n_0} \) for every \(\chi \in \Lambda_{n_0} \).

By Lemma 7, we have

\[\mu^\chi \mu^\nu = (\frac{1}{2})^{n_0} \|\chi\| \|\nu\| \mu^\chi \mu^\nu, \]

where \(\chi_1 = \nu, \ldots, \chi_j = \nu \) and \(\chi_{j+1} \neq \nu \), and \(\mu^\chi \mu^\nu \in M(S_0(f)) \). Since \(\mu^\chi \neq \lambda_2 \) and \(\mu^\nu \neq \lambda_2 \), we have \(\mu^\chi \mu^\nu \neq \lambda_2 \ast \lambda_2 \). Since \(\lambda_2 \ast \lambda_2 \in M(S_1(f)) \), we have \(\mu^\chi \mu^\nu \perp M(S_0(f)) \), a contradiction. Thus there exists an integer \(n \) such that \(\mu_n \notin M(S_0(f)) \). Let \(n_1 \) be the smallest integer such that \(\mu_n \notin M(S_0(f)) \). Then there exists \(\alpha \in \Lambda_{n_1} \) such that \(\mu^\alpha \in M(S_1(f)) \) and \(m_{G_{\beta}} \in \)
A PROBLEM OF J. L. TAYLOR

\[M(S_0(f)) \] for \(\beta \in \Lambda_{n_1} \) and \(\beta \neq \alpha \), by (3) of Lemma 3. Since \(M(\overline{R}_{G_{\alpha}}) \subseteq M(S_1(f)) \), we have \(\mu^\alpha \in M(S_1(f)) \) by (2) of Lemma 7. Suppose that \(\mu^\beta \notin M(S_0(f)) \) for some \(\beta \in \Lambda_{n_1} \) and \(\beta \neq \alpha \). Then we have \(\mu^\beta \ast \mu^\alpha \notin M(S_0(f)) \).

By (3) of Lemma 7, we have

\[\mu^\beta \ast \mu^\alpha = (\frac{1}{2^2}) |\beta| + \frac{1}{2} m_{\alpha_{0,1,\ldots,n_1}} \]

where \(\alpha_1 = \beta_1, \ldots, \alpha_{i_j} = \beta_{j_i} \) and \(\alpha_{j+1} \neq \beta_{j+1} \), and \(j < |\alpha| = n_1 \). This shows that \(\mu^\beta \ast \mu^\alpha \notin M(S_0(f)) \), a contradiction. Thus we complete this lemma.

For \(f \in \mathcal{S} \), \(f \geq 0 \), there exists \(g_\xi \in \mathcal{S} \), \(g_\xi = g_\xi \) such that \(V_S(\mathcal{S}_j(g_\xi)) = M(\mathcal{S}_j(f/\mathcal{S}_j(g_\xi))) \), where \(\mathcal{S}_j(f) = \{ x \in \mathcal{S}; f(x) = 1 \} \) and \(M(\mathcal{S}_j(f)) = \{ \mu \in M(\overline{R}); \theta \mu \text{ is concentrated on } \mathcal{S}(f) \} \) [2].

Proposition 2. \(\theta \mu \) is concentrated on \(K \).

Proof. Let \(f \in \mathcal{S} \) such that \(f \geq 0 \), \(f \neq f \) and \(\mu(f) \neq 0 \). Let \(f = h_\xi \cdot f \) be the polar decomposition of \(f \), where \(h_\xi = h_\xi \in \mathcal{S} \) [2, Lemma 3.3]. Then \(\nu(h_\xi) \neq 0 \). By Lemma 8, there exists \(\alpha \in \Lambda \) such that \(\mu^\alpha \in M(\mathcal{S}_1(\mathcal{S}_j(g_\xi))) \) and \(\mu^\beta \in M(\mathcal{S}_0(\mathcal{S}_j(g_\xi))) \) for \(\beta \neq \alpha \) and \(|\beta| = |\alpha| \). Since \(M(\overline{R}_{G_{\alpha}}) \subseteq M(\mathcal{S}_1(\mathcal{S}_j(g_\xi))) \) and \(m_{\alpha_{0,1,\ldots,n_1}} \in M(\mathcal{S}_1(\mathcal{S}_j(g_\xi))) \), we have \(M(\overline{R}_{G_{\alpha}}) \subseteq M(\mathcal{S}_1(\mathcal{S}_j(g_\xi))) \) [3]. Thus we complete the proof of this proposition.

Proposition 3. \(\mu \) is a symmetric measure and \(\mu \) has a countable spectrum.

Proof. Since \(\mu \geq 0 \), we have \(\mu^* = \mu \). Let \(f \in \mathcal{S} \). By the proof of Proposition 2, there exists \(\alpha \in \Lambda \) such that \(\mu(\mathcal{S}_j(f)) = \mu^\alpha(\mathcal{S}_j(f)) \). Since \(\mu^\alpha \in M(\overline{R}_{G_{\alpha}}) \) and \(\mathcal{S}(\mathcal{S}_j(f)) = \|\lambda\| \) for every positive \(\lambda \in M(\overline{R}_{G_{\alpha}}) \), there exists \(\gamma \in \overline{R}_{G_{\alpha}} \) such that \(\tilde{\mu}(\mathcal{S}_j(f)) = \tilde{\mu}(\gamma) \) [2]. Since \(\mu^\alpha \in M(G_{\alpha}) \), there exists \(\eta \in \hat{G}_{\alpha} \subseteq R \) such that \(\tilde{\mu}(\mathcal{S}_j(f)) = \tilde{\mu}(\gamma) = \tilde{\mu}(\eta) \). By Lemma 6, we have

\[\{ \mu^\alpha(\eta); \eta \in R; \xi \in \mathcal{S}_1(\mathcal{S}_j(g_\xi)) = 0, (\frac{1}{2})^{|\alpha|}, (\frac{1}{2})^{|\alpha|+1}, (\frac{1}{2})^{|\alpha|+2}, \ldots \}. \]

Thus we have \(\{ \mu(\mathcal{S}_j(f)); f \in \mathcal{S} \} = \{ 0, 1, \frac{1}{2}, (\frac{1}{2})^2, (\frac{1}{2})^3, \ldots \} \). This shows that \(\mu \) is symmetric and has a countable spectrum.

By Propositions 1, 2 and 3, we have our Theorem.

Corollary. There is a compact metrizable abelian group \(G \) and a nonzero symmetric measure \(\mu \in M_K(G) \) so that the spectrum of \(\mu \) is a countable set.

Proof. We may assume that \(E_{\alpha} \) is a countable set \(\alpha \in \Lambda \) in Lemma 1. Let \(H \) be the subgroup generated by \(\{ H_{\alpha}; \alpha \in \Lambda \} \); then \(H \) is a countable subgroup of \(R \). Let \(H^\perp \) be the annihilator of \(H \) in \(\overline{R} \); then \(H^\perp \) is a compact subgroup of \(\overline{R} \). Since \(H = \overline{R}/H^\perp \), \(\overline{R}/H^\perp \) is a compact metrizable group. Then we can construct \(\mu \in M(\overline{R}/H^\perp) \), which has the properties of this corollary, in the same way as in the proof of our Theorem.
REFERENCES

DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF EDUCATION, TOKYO, JAPAN

Current address: Department of Mathematics, Kanagawa University, Yokohama, Japan