ON A PROBLEM OF J. L. TAYLOR

KEIJI IZUCHI

ABSTRACT. Let S be the structure semigroup of a measure algebra $M(G)$ and K be the union of all maximal groups of S. Taylor proposed the following problem: Are there L.C.A. groups G with nontrivial measures concentrated on K? The purpose of this paper is to give a positive solution to this problem.

Let G be a locally compact abelian group with dual group \hat{G}. We denote by $M(G)$ the Banach algebra of all bounded regular Borel measures on G under convolution multiplication and total variation norm. In [2], Taylor showed that there is a compact topological semigroup S, called the structure semigroup of $M(G)$, and an order preserving isometry-isomorphism θ of $M(G)$ into $M(S)$ such that:

1. $\theta(M(G))$ is a weak*-dense L-subalgebra of $M(S)$;
2. the maximal ideal space of $M(G)$ is identified with \hat{S}, the set of all continuous semicharacters on S, and the Gel'fand transform of $\mu \in M(G)$ is given by $\hat{\mu}(f) = \int_S f d\theta \mu$ for $f \in \hat{S}$; \{$\hat{\mu}(f); f \in \hat{S}\}$ is called the spectrum of μ.

μ is called symmetric if $\mu(f) = \overline{\mu}(f)$ for every $f \in \hat{S}$. Let K be the union of all maximal groups K_p of S. Then $K = \{x \in S; |f(x)| = 1 \text{ or } 0 \text{ for every } f \in \hat{S}\}$.

Definition. Let $M^+(G)$ be the set of all $\mu \in M(G)$ such that $\theta \mu$ is concentrated on K but $\theta |\mu|(K_p) = 0$ for every $p \in P$.

In [3], Taylor proposes the following problem concerning $M^+(G)$.

Problem. Are there L.C.A. groups G for which $M^+(G) \neq 0$?

The purpose of this paper is to show the existence of a L.C.A. group G such that $M^+(G) \neq 0$. The following is our main theorem.

Theorem. Let \mathcal{R} be the Bohr compactification of the real line \mathbb{R}. Then there exists nonzero $\mu \in M^+_K(\mathcal{R})$ so that μ is a positive symmetric measure and the spectrum of μ is a countable set.

We put $\Lambda_n = \{(a_0, a_1, \ldots, a_n); a_0 = 0, a_i = 0 \text{ or } 1 (i = 1, 2, \ldots, n)\}$ (for $n = 0, 1, 2, \ldots$) and $\Lambda = \bigcup_{n=0}^{\infty} \Lambda_n$. For $\alpha \in \Lambda$, we put $|\alpha| = n$ if $\alpha \in \Lambda_n$.

Lemma 1. There exists a countable family $\{E_\alpha\}_{\alpha \in \Lambda}$ such that E_α is a...
subset of R ($\alpha \in \Lambda$) satisfying the following conditions:

1. $E_{\alpha} \subseteq E_{\alpha,0}$ and $E_{\alpha} \subseteq E_{\alpha,1}$ for $\alpha \in \Lambda$;
2. $E_{\alpha,0} \setminus E_{\alpha} \neq \emptyset$ and $E_{\alpha,1} \setminus E_{\alpha} \neq \emptyset$ for $\alpha \in \Lambda$;
3. for $\alpha, \beta \in \Lambda$, $E_{\alpha} \cap E_{\beta} = E_{\alpha,0, a_1, \ldots, a_j}$ if $\alpha = (\beta_1, \ldots, \beta_j)$ and $\alpha_{j+1} \neq \beta_{j+1}$;
4. $\bigcup_{\alpha \in \Lambda} E_{\alpha}$ is an independent set.

Proof. Since R contains an infinite independent set, it is easy to construct such a family.

We denote by H_{α} the subgroup of R generated by E_{α} ($\alpha \in \Lambda$). The following lemma is clear by Lemma 1.

Lemma 2. The countable family $\{H_{\alpha}\}_{\alpha \in \Lambda}$ has the following properties:

1. $H_{\alpha} \subseteq H_{\alpha,0}$ and $H_{\alpha} \subseteq H_{\alpha,1}$ for $\alpha \in \Lambda$;
2. $H_{\alpha,0}/H_{\alpha}$ and $H_{\alpha,1}/H_{\alpha}$ are infinite subgroups for $\alpha \in \Lambda$;
3. for $\alpha, \beta \in \Lambda$, $H_{\alpha} \cap H_{\beta} = H_{\alpha,0, a_1, \ldots, a_j}$ if $\alpha = (\beta_1, \ldots, \beta_j)$ and $\alpha_{j+1} \neq \beta_{j+1}$.

Let G_{α} be the annihilator in \overline{R} of H_{α} ($\alpha \in \Lambda$). We put $G_{\alpha} + G_{\beta} = \{x + y; x \in G_{\alpha}, y \in G_{\beta}\}$; then $G_{\alpha} + G_{\beta}$ is a compact subgroup. The following lemma is clear by Lemma 2.

Lemma 3. $\{G_{\alpha}\}_{\alpha \in \Lambda}$ is a family of compact subgroups of \overline{R} and has the following properties:

1. $G_{\alpha} \supseteq G_{\alpha,0}$ and $G_{\alpha} \supseteq G_{\alpha,1}$ for $\alpha \in \Lambda$;
2. $G_{\alpha}/G_{\alpha,0}$ and $G_{\alpha}/G_{\alpha,1}$ are compact infinite groups for $\alpha \in \Lambda$;
3. for $\alpha, \beta \in \Lambda$, $G_{\alpha} + G_{\beta} = G_{\alpha,0, a_1, \ldots, a_j}$ if $\alpha = (\beta_1, \ldots, \beta_j)$ and $\alpha_{j+1} \neq \beta_{j+1}$.

For a compact subgroup $X \subset \overline{R}$, we denote by m_X the normalized Haar measure on X. We can consider $m_X \in M(\overline{R})$. We put $\mu_n = (\lambda^n/\sigma \sum_{\alpha \in \Lambda} m_{G_{\alpha}})$, $n = 0, 1, \ldots$. Then $\mu_n \in M(\overline{R})$, $\mu_n \geq 0$ and $\|\mu_n\| = 1$. For $\mu \in M(\overline{R})$, we denote by $\hat{\mu}$ the Fourier-Stieltjes transform of μ. By the definition of $\{\mu_n\}_{n=0}^{\infty}$ and Lemma 2, we get

Lemma 4. $\{\mu_n\}_{n=0}^{\infty}$ has the following properties:

1. If $y \in H_0$, then $\mu_n(y) = 1$ for $n = 0, 1, 2, \ldots$;
2. if $y \in H_{a_0, a_1, \ldots, a_{k-1}} \setminus H_{a_0, a_1, \ldots, a_{k-1}}$, then $\mu_n(y) = (\lambda/\sigma)^k$ for $n \geq k$ and $\mu_n(y) = 0$ for $n < k$;
3. if $y \in R \setminus H_{\alpha}$ for every $\alpha \in \Lambda$, then $\mu_n(y) = 0$, $n = 0, 1, 2, \ldots$.

By Lemma 4, $\{\mu_n\}_{n=0}^{\infty}$ has only one weak*-cluster point μ in $M(\overline{R})$ and has the following properties.

Lemma 5. (1) $\mu \in M(\overline{R})$, $\mu \geq 0$ and $\|\mu\| = 1$;
2. if $y \in H_0$, then $\mu_n(y) = 1$.
For \(a \in \Lambda \), we put \(\Lambda_a = \{ \beta \in \Lambda_n; \alpha_0 = \beta, \ldots, \alpha_n = \beta \} \) for \(n \geq |a| \) and \(\Lambda^* = \bigcup_{n \geq |a|} \Lambda_a \). We put \(\mu_n^a = \sum_{\beta \in \Lambda_n} (1/2)^n m_{G_{\beta}} \) for \(n \geq |a| \). Then \(\mu_n^a \geq 0 \), \(\|\mu_n^a\| = (1/2)^n |a| \) and \(\mu_{n+\infty}^a = 1 \) has only one weak*-cluster point \(\mu \in \mathcal{M}(\hat{R}) \), and \(\mu_{n+\infty}^a \) has the following properties.

Lemma 6. (1) \(\mu = \sum_{\beta \in \Lambda_n^*} \mu_n^a \);
(2) if \(y \in H_{a^*} \), then \(\mu_n(\gamma) = (1/2)^n |a| \);
(3) for \(y \in H_{a^*}, y \in \Lambda_n^* \) \((k \geq |a|) \),
\[\mu_n^a(y) = (1/2)^k \text{ if } (\beta_0, \beta_1, \ldots, \beta_k) \in \Lambda^a \]
\[= 0 \text{ if } (\beta_0, \beta_1, \ldots, \beta_k) \not\in \Lambda^a \]
(4) if \(y \in R \setminus H_n \) for every \(a \in \Lambda \), then \(\mu_n^a(y) = 0 \).

For a compact subgroup \(X \subset \hat{R} \), there exists the strongest L.C.A. group topology on \(\hat{R} \) such that \(X \) is an open compact subgroup of \(\hat{R} \). We denote by \(R_X \) the resulting L.C.A. topological group. We may consider \(M(R_X) \subset M(\hat{R}) \).

For \(\lambda_1, \lambda_2 \in M(\hat{R}) \), we denote by \(\lambda_1 \perp \lambda_2 \) if \(\lambda_1 \) is mutually singular with \(\lambda_2 \).

For \(\lambda \in M(\hat{R}) \) and a subset \(N \subset M(\hat{R}) \), we denote by \(\lambda \perp N \) if \(\lambda \perp \nu \) for every \(\nu \in N \).

Lemma 7. (1) \(\mu = \sum_{\alpha \in \Lambda} \mu^a \) for every positive integer \(k \);
(2) \(\mu^a \in M(\hat{R}_{G_\lambda}) \), and \(\mu^a \perp M(\hat{R}_{G_\lambda}) \) for \(\beta \neq \alpha, |\beta| = |\alpha| \);
(3) for \(\alpha \neq \beta \),
\[\mu^a \ast \mu^\beta = (1/2)^{|a|} (1/2)^{|\beta|} m_{G_{\alpha^0, a_1, \ldots, a_j}} \]
if \(\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j \) and \(\alpha_{j+1} \neq \beta_{j+1} \).

Proof. By (3) of Lemmas 2, 5 and 6, we have \(\mu = \sum_{\alpha \in \Lambda} \mu^a \) for every integer \(k \), that is \(\mu = \sum_{\alpha \in \Lambda} \mu^a \). For \(\alpha \neq \beta \) such that \(\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j \) and \(\alpha_{j+1} \neq \beta_{j+1} \), we have
\[\mu^a \ast \mu^\beta(y) = \mu^a(y) \mu^\beta(y) = (1/2)^{|a|} \ast (1/2)^{|\beta|} \]
if \(y \in H_{a_0, \ldots, a_j} \)
\[= 0 \]
if \(y \not\in H_{a_0, \ldots, a_j} \)
by (3) of Lemmas 2 and 6. This shows that
\[\mu^a \ast \mu^\beta = (1/2)^{|a|} \ast (1/2)^{|\beta|} m_{G_{\alpha^0, a_1, \ldots, a_j}} \]

Let \(\phi \) be a canonical homomorphism of \(\hat{R} \) onto \(\hat{R}_{G_\lambda} \), and for \(\lambda \in M(\hat{R}) \) we put \(\hat{\lambda}(E) = \hat{\lambda}(\phi^{-1}(E)) \) for every Borel set \(E \) of \(\hat{R}_{G_\lambda} \). Then \(\hat{\lambda} \in M(\hat{R}_{G_\lambda}) \) and
\(\lambda(y \circ \phi) = \lambda(y) \) for \(y \in \hat{G}/G_a = H^a \). If \(y \in H^a(\alpha = (a_0, a_1, \ldots, a_k)) \) then \(y \in H_{a_0, a_1, \ldots, a_j} \) for some \(0 \leq j \leq k \) and \(\widehat{\mu}(y) = (\frac{1}{2})^j \) by (3) of Lemma 5. Then we have

\[
\mu = \frac{1}{2} m_{D_{a_0}} + (\frac{1}{2})^2 m_{D_{a_0}, a_1} + \cdots + (\frac{1}{2})^k m_{D_{a_0}, a_1, \ldots, a_{k-1}} + (\frac{1}{2})^k \delta_0,
\]

where \(D_{a_0, a_1, \ldots, a_j} \) is the annihilator in \(\hat{G}/G_a \) of \(H_{a_0, a_1, \ldots, a_j} \subset H^a \),

\(m_{D_{a_0}, a_1, \ldots, a_j} \) is the normalized Haar measure on \(D_{a_0, a_1, \ldots, a_j} \) and \(\delta_0 \) is the point measure at \(0 \in \hat{G}/G_a \). Since \(H_a/H_{a_0, a_1, \ldots, a_j} \) is an infinite group,

\(m_{D_{a_0}, a_1, \ldots, a_j} \) is a continuous measure on \(\hat{G}/G_a \). Since \(\mu^a_n (n \geq |\alpha|) \) is concentrated on \(G_a \), \(\mu^a \) is concentrated on \(G_a \) and \(\mu^a = (\frac{1}{2})^k \delta_0 \). Thus

\[
\sum_{\beta = a, \beta \in A, |\beta| = |\alpha|} \mu^\beta
\]

is a continuous measure on \(\hat{G}/G_a \) and we have \(\mu^a \in M(\hat{G}/G_a) \) and \(\mu^a \perp M(G_R) \) for \(\beta \neq \alpha \) and \(|\beta| = |\alpha| \).

Remark. By (2) of Lemma 7, \(\mu^a \perp \mu^\beta \) if \(\alpha \neq \beta \) and \(|\alpha| = |\beta| \).

By Lemma 7, we have

Proposition 1. \(\theta_{\mu}(K_p) = 0 \) for every maximal group \(K_p \) of \(S \).

Proof. Suppose \(\theta_{\mu}(K_p) \neq 0 \) for a maximal group \(K_p \) of \(S \). Then there is a positive integer \(n \) such that \((\frac{1}{2})^n < \theta_{\mu}(K_p) \). By (1) of Lemma 7, there is an \(\alpha \in \Lambda_n \) such that \(\theta_{\mu^a}(K_p) \neq 0 \). By (2) of Lemma 7, we have \(\theta_{\mu^\beta}(K_p) = 0 \) for every \(\beta \in \Lambda_n (\beta \neq \alpha) \). So we have \(\theta_{\mu}(K_p) = \theta_{\mu^a}(K_p) \leq ||\mu^a|| = (\frac{1}{2})^n \), a contradiction.

For \(f \in \hat{S} \) and \(f^2 = f \), we put \(S_0(f) = \{ x \in S; f(x) = 0 \} \), \(S_1(f) = \{ x \in S; f(x) = 1 \} \) and \(M(S_0(f)) = \{ \mu \in M(G_R); \theta_{\mu} \text{ is concentrated on } S_j(f) \} (j = 0, 1) \). Then \(M(S_0(f)) \) is an \(L \)-ideal of \(M(G_R) \) and \(M(S_1(f)) \) is an \(L \)-subalgebra [2].

Lemma 8. Let \(f \in \hat{S} \) such that \(f^2 = f \) and \(\widehat{\mu}(f) \neq 0 \). Then there exists \(\alpha \in \Lambda_n \) such that:

(1) \(\mu^\alpha \in M(S_1(f)) \);

(2) \(\mu^\beta \in M(S_0(f)) \) for \(\beta \neq \alpha \) and \(|\beta| = |\alpha| \).

Proof. Since \(\widehat{\mu}(f) \neq 0 \), we can decompose \(\mu = \lambda_1 + \lambda_2 \) (\(\lambda_2 \neq 0 \)), where \(\lambda_1 \in M(S_0(f)) \) and \(\lambda_2 \in M(S_1(f)) \). Suppose that \(\mu_n \in M(S_0(f)) \) for every integer \(n \). For some integer \(n_0 \) such that \((\frac{1}{2})^{n_0} < ||\lambda_2|| \), there exists \(\chi, \nu \in \Lambda_{n_0} \) such that \(\mu^\chi \perp \lambda_2 \) and \(\mu^\nu \perp \lambda_2 \). Because, \(\mu^\chi \perp \mu^\nu \) for \(\chi, \nu \in \Lambda_{n_0} \) and \(\chi \neq \nu \), by the remark of Lemma 7, and \(||\mu^\chi|| = (\frac{1}{2})^{n_0} \) for every \(\chi \in \Lambda_{n_0} \).

By Lemma 7, we have

\[
\mu^\chi \perp \mu^\nu = (\frac{1}{2})^{n_0} \mu^\chi_{x_0, x_1, \ldots, x_j},
\]

where \(x_1 = \nu_1, \ldots, x_j = \nu_j \) and \(x_{j+1} \neq \nu_{j+1} \), and \(\mu^\chi \perp \mu^\nu \in M(S_0(f)) \). Since \(\mu^\chi \perp \lambda_2 \) and \(\mu^\nu \perp \lambda_2 \), we have \(\mu^\chi \perp \lambda_2 \perp \lambda_2 = 2^k \lambda_2 \). Since \(\lambda_2 \perp \lambda_2 \in M(S_1(f)) \), we have \(\mu^\chi \perp \mu^\nu \perp \lambda_2 \notin M(S_0(f)) \), a contradiction. Thus there exists an integer \(n \) such that \(\mu_n \notin M(S_0(f)) \). Let \(n_1 \) be the smallest integer such that \(\mu_n \notin M(S_0(f)) \). Then there exists a \(\alpha_1 \) such that \(\mu_{\alpha_1} \in M(S_1(f)) \) and \(m_{G_\beta} \in M(G_R) \).
$M(S_0(f))$ for $\beta \in \Lambda_{n_1}$ and $\beta \neq \alpha$, by (3) of Lemma 3. Since $M(\overline{R}_{G_\alpha}) \subset M(S_1(f))$, we have $\mu^a \in M(S_1(f))$ by (2) of Lemma 7. Suppose that $\mu^\beta \notin M(S_0(f))$ for some $\beta \in \Lambda_{n_1}$ and $\beta \neq \alpha$. Then we have $\mu^\beta \cdot \mu^a \notin M(S_0(f))$.

By (3) of Lemma 7, we have

$$\mu^\beta \cdot \mu^a = (\beta_j | \beta_i) + \frac{1}{m_{G_{a_0}, a_1}, \ldots, a_j},$$

where $\alpha_1 = \beta_1, \ldots, \alpha_j = \beta_j$, and $\alpha_{j+1} \neq \beta_{j+1}$, and $j < |\alpha| = n_1$. This shows that $\mu^\beta \cdot \mu^a \notin M(S_0(f))$, a contradiction. Thus we complete this lemma.

For $f \in \hat{S}$, $f \geq 0$, there exists $g_f \in \hat{S}$, $g_f^2 = g_f$ such that $M(S_1(g_f)) = M(O(f))$, where $O(f) = \{x \in S; f(x) = 1\}$ and $M(O(f)) = \{\mu \in M(\overline{R}); \theta \mu \text{ is concentrated on } O(f)\}$. [2]

Proposition 2. $\theta \mu$ is concentrated on K.

Proof. Let $f \in \hat{S}$ such that $f \geq 0$, $f \neq 1$ and $\hat{\eta}(f) \neq 0$. Let $f = h_f \cdot f$ be the polar decomposition of f, where $h_f \cdot h_f = 1$ [2, Lemma 3.3]. Then $\hat{\mu}(h_f) \neq 0$. By Lemma 8, there exists $\alpha \in \Lambda$ such that $\mu^\alpha \in M(S_1(h_f))$ and $\mu^\beta \in M(S_0(h_f))$ for $\beta \neq \alpha$ and $|\beta| = |\alpha|$. Since $M(\overline{R}_{G_{a_\alpha}}) \subset M(S_1(h_f))$ and $m_{G_{a_\alpha}} \in M(S_1(g_f))$, we have $M(\overline{R}_{G_{a_\alpha}}) \subset M(g_f))$ and $\mu^\alpha \in M(S_1(g_f))$. Thus we complete the proof of this proposition.

Proposition 3. μ is a symmetric measure and μ has a countable spectrum.

Proof. Since $\hat{\mu} \geq 0$, we have $\mu^* = \mu$. Let $f \in \hat{S}$. By the proof of Proposition 2, there exists $\alpha \in \Lambda$ such that $\hat{\mu}(f) = \mu^\alpha(f)$. Since $\mu^\alpha \in M(\overline{R}_{G_{a_\alpha}})$ and $\hat{\lambda}(f) = ||\lambda||$ for every positive $\lambda \in M(\overline{R}_{G_{a_\alpha}})$, there exists $\gamma \in \overline{G_{a_\alpha}}$ such that $\hat{\mu}(f) = \mu^\alpha(f) = \hat{\mu}(\gamma) = \hat{\mu}(\gamma)$. By Lemma 6, we have

$$\{\mu^\gamma(\eta); \eta \in R_{\gamma} = 1, (\frac{1}{2^0})|\alpha_1|, (\frac{1}{2^1})|\alpha_1|+1, (\frac{1}{2^2})|\alpha_1|+2, \ldots\}.$$

Thus we have $\{\mu^\gamma(\eta); f \in \hat{S} = \{0, 1, \frac{1}{2}, (\frac{1}{2})^2, (\frac{1}{2})^3, \ldots\}$. This shows that μ is symmetric and has a countable spectrum.

By Propositions 1, 2 and 3, we have our Theorem.

Corollary. There is a compact metrizable abelian group G and a nonzero symmetric measure $\mu \in M_K(G)$ so that the spectrum of μ is a countable set.

Proof. We may assume that E_α is a countable set ($\alpha \in \Lambda$) in Lemma 1. Let H be the subgroup generated by $\{H_{a_\alpha}; \alpha \in \Lambda\}$, then H is a countable subgroup of R. Let H^\perp be the annihilator of H in \overline{R}; then H^\perp is a compact subgroup of \overline{R}. Since $H = \overline{R}/H^\perp$, \overline{R}/H^\perp is a compact metrizable group. Then we can construct $\mu \in M(\overline{R}/H^\perp)$, which has the properties of this corollary, in the same way as in the proof of our Theorem.
REFERENCES

DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF EDUCATION, TOKYO, JAPAN

Current address: Department of Mathematics, Kanagawa University, Yokohama, Japan