Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Contracted ideals and purity for ring extensions


Authors: J. W. Brewer and D. L. Costa
Journal: Proc. Amer. Math. Soc. 53 (1975), 271-276
MSC: Primary 13B99
DOI: https://doi.org/10.1090/S0002-9939-1975-0384774-X
MathSciNet review: 0384774
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper an example is given of a pair of commutative noetherian rings $ R \subseteq S$ with $ S$ a finite $ R$-module and $ IS \cap R = I$ for each ideal $ I$ of $ R$, but having the property that $ 0 \to R \to S$ is not a pure sequence of $ R$-modules. Purity of the sequence $ 0 \to R \to S$ is equivalent to $ R[X]$ being ``ideally closed'' in $ S[X],\;X$ an indeterminate. Therefore, the example renders appealing the proposition that for $ R$ noetherian and $ S$ a noetherian torsion-free $ R$-algebra containing $ R$, if $ \alpha S \cap R = \alpha R$ for each non-zero-divisor $ \alpha \epsilon R$, then the extension $ R[X] \subseteq S[X]$ has the same properties. Finally, it is also shown that for $ R$ noetherian and $ 0 \to R \to S$ pure, with $ S$ an $ R$-algebra, then $ R[[{X_1}, \ldots ,{X_n}]]$ is pure in $ S[[{X_1}, \ldots ,{X_n}]]$ for each positive integer $ n$.


References [Enhancements On Off] (What's this?)

  • [1] E. Enochs, On absolutely pure modules (preprint).
  • [2] R. W. Gilmer, Jr. and J. Mott, Some results on contracted ideals, Duke Math. J. 37 (1970), 751-767. MR 42 #3067. MR 0268168 (42:3067)
  • [3] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234. MR 0254021 (40:7234)
  • [4] S. McAdam, Going down in polynomial rings, Canad. J. Math. 23 (1971), 704-711. MR 43 #6202. MR 0280482 (43:6202)
  • [5] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [6] J. J. Rotman, Notes on homological algebra, Van Nostrand Reinhold Math. Studies, no. 26, Van Nostrand, New York, 1970. MR 0409590 (53:13342)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B99

Retrieve articles in all journals with MSC: 13B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0384774-X
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society