ON THE CONVOLUTION OF A MEASURE AND A FUNCTION

S. K. BERBERIAN

ABSTRACT. Complements to a theorem of Bourbaki on the convolution of a measure and a function.

The setting is as follows [3, Chapter VIII, §4, No. 1]: \(X \) is a locally compact space, \(G \) is a locally compact group acting continuously on the left in \(X \), and \(\beta \) is a nonzero positive measure on \(X \) that is quasi-invariant under \(G \); more precisely,

\[
\gamma(s)\beta = \chi(s^{-1}, \cdot) \cdot \beta
\]

for all \(s \in G \), where \(\chi \) is universally measurable and everywhere \(> 0 \) on \(G \times X \).

The following proposition is central to the discussion of convolution of functions in [3]:

Proposition [3, Chapter VIII, §4, No. 1, Proposition 2]. Let \(\mu \) be a measure on \(G \), \(f \) a locally \(\beta \)-integrable complex function on \(X \). Assume that one of the following conditions is verified:

(i) \(f \) and \(\chi \) are continuous;

(ii) \(G \) operates properly in \(X \), and \(f \) is zero on the complement of a denumerable union of compact sets;

(iii) \(\mu \) is carried by a denumerable union of compact sets.

If \(\mu \) and \(f \) are convolvable relative to \(\beta \), then the function \(s \mapsto f(s^{-1}x) \chi(s^{-1}, x) \) is essentially \(\mu \)-integrable for locally \(\beta \)-almost all \(x \); and if \(\mu \ast f \) denotes any locally \(\beta \)-integrable function such that \((\mu \ast f) \cdot \beta = \mu \ast (f \cdot \beta) \), then

\[
(\mu \ast f)(x) = \int f(s^{-1}x)\chi(s^{-1}, x)\,d\mu(s)
\]

locally \(\beta \)-almost everywhere.

Case (ii) apparently needs an additional hypothesis, and the proof of Case (iii) given in [3] has some sizable gaps. The aim of this paper is to clarify these points; also, we reformulate condition (iii) so as to make it more flexible in applications, one of which is given. All notations and terminology are taken from [1]–[3].

By way of motivation, we remark that the roughly comparable result in
the treatise of E. Hewitt and K. A. Ross is Lemma (20.6) of [5]. There, the function f is assumed to be a Borel function, therefore the function $(s, x) \mapsto f(s^{-1}x)$ is a Borel function on the product space. This smooths the way for an application of Fubini's theorem [5, Theorem (13.9)]; moreover, all of the partial functions $s \mapsto f(s^{-1}x), x \mapsto f(s^{-1}x)$ are Borel functions. Consequently, the measurability problem considered in Lemma 3 below does not arise in [5]; on the other hand, the Bourbaki formulation is more flexible in that non-Borel functions are allowed.

Lemma 1. The following conditions on a measure μ are equivalent:
(a) μ is carried by a denumerable union of compact sets;
(b) μ is carried by a denumerable union of essentially μ-integrable sets;
(c) μ is carried by a μ-moderated, μ-measurable set;
(d) $|\mu| = \sum_1^\infty \mu_n$, where (μ_n) is a summable sequence of bounded positive measures.

Proof. We can suppose $\mu \geq 0$. It is trivial that (a) implies (b).

(b) \Rightarrow (d). Suppose μ is carried by $S = \bigcup_1^\infty S_n$, where the S_n are essentially μ-integrable and, as we may suppose, disjoint. The measures $\mu_n = \phi_{S_n} \cdot \mu$ (ϕ denotes characteristic function) are bounded [2, §5, No. 3, Corollary of Theorem 1]; since $\mu = \phi_S \cdot \mu$ and $\phi_S = \sum_1^\infty \phi_{S_n}$, it is an elementary consequence of the Lebesgue dominated convergence theorem that $\mu = \sum_1^\infty \mu_n$ [1, Chapter IV, §4, No. 3, Corollary 2 of Theorem 2], [2, §2, No. 1].

(d) \Rightarrow (c). Suppose $\mu = \sum_1^\infty \mu_n$, where the μ_n are bounded positive measures. For each n, write $\mu_n = f_n \cdot \mu$ with f_n essentially μ-integrable [2, §5, No. 5, Theorem 2 and No. 3, Corollary of Theorem 1]. We can suppose that f_n is μ-integrable [2, §5, No. 3, Corollary 2 of Proposition 3]. Then for every n, the set $A_n = \{s; f_n(s) \neq 0\}$ is μ-measurable, and μ-moderated [2, §1, No. 3, Corollary of Proposition 9], hence so is $A = \bigcup_1^\infty A_n$. For all n, evidently $\phi_A \cdot \mu_n = \mu_n$, that is, CA is locally μ_n-negligible; it follows that CA is locally μ-negligible [2, §2, No. 2, Corollary 2 of Proposition 1], in other words A carries μ.

(c) \Rightarrow (a). Suppose A is a μ-moderated, μ-measurable set such that $\phi_A \cdot \mu = \mu$. Then $A \subseteq \bigcup_1^\infty K_n \cup N$, where the K_n are compact and N is μ-negligible. Writing $S = \bigcup_1^\infty K_n$, the relation $CS \subseteq N \cup CA$ shows that CS is locally μ-negligible.

Lemma 2. If f is a locally β-integrable function on X and if μ is a measure on G such that μ and f are convolvable relative to β, then the function $F(s, x) = f(s^{-1}x)\chi(s^{-1}, x)$ on $G \times X$ is measurable for $\mu \otimes \beta$.

Proof. For every $h \in K(X)$, the function $(1 \otimes h)F$ is essentially integrable for $\mu \otimes \beta$ [3, Chapter VIII, §4, No. 1, proof of Proposition 2], hence
\(\mu \otimes \beta \)-measurable. Then \(F \) is \(\mu \otimes \beta \)-measurable by a routine application of the principle of localization [1, Chapter IV, §5, No. 2, Proposition 4]. Incidentally, in view of the hypotheses on \(\chi \), it is the same to say that the function \((s, x) \mapsto f(s^{-1}x) \) is \(\mu \otimes \beta \)-measurable.

Lemma 3. With hypotheses as in Lemma 2, let \(M = \{ x : F(., x) \text{ is not } \mu \text{-measurable} \} \).

1. If \(f \) and \(\chi \) are continuous, then \(M = \emptyset \).
2. If \(F \) (equivalently, the function \((s, x) \mapsto f(s^{-1}x) \)) is moderated for \(\mu \otimes \beta \), then \(M \) is \(\beta \)-negligible.
3. If \(\mu \) is carried by a denumerable union of compact sets, then \(M \) is locally \(\beta \)-negligible.

Proof. (1) For every \(x \), \(F(., x) \) is continuous.

(2) In view of Lemma 2, this is immediate from [2, §8, No. 2, Proposition (2a)].

(3) In view of criterion (d) of Lemma 1, this follows from the proof of [2, §8, No. 2, Proposition (2b)].

Proof of the Proposition (under an added hypothesis in Case (ii)). We can suppose \(f \geq 0 \) and \(\mu \geq 0 \). Let \(F(s, x) = f(s^{-1}x)\chi(s^{-1}, x) \), and let \(g : X \rightarrow \mathbb{R}^+ \) be the function defined by the formula \(g(x) = \int F(., x) \, d\mu \). One has \(g(x) = \int F(., x) \, d\mu \) in Case (i) (because every \(F(., x) \) is continuous [2, §1, No. 1, Proposition 4]) and in Case (ii) (because, for each \(x \), \(F(., x) \) vanishes outside a denumerable union of compact sets [3, Chapter III, §4, No. 5, Theorem (1b)]).

Cases (i), (ii). As shown in [3], \(g \) is locally \(\beta \)-integrable and \(g \cdot \beta = \mu \ast (f \cdot \beta) \), that is, \(g \) is a determination of \(\mu \ast f \). In particular, the set \(N = \{ x : g(x) = +\infty \} \) is locally \(\beta \)-negligible. In Case (i), this means (in view of part (1) of Lemma 3) that \(F(., x) \) is \(\mu \)-integrable for locally \(\beta \)-almost all \(x \).

In Case (ii), if one assumes that the function \((s, x) \mapsto f(s^{-1}x) \) is \(\mu \otimes \beta \)-moderated, then it results from part (2) of Lemma 3 that \(F(., x) \) is \(\mu \)-integrable for locally \(\beta \)-almost all \(x \).

Case (iii). Suppose \(\mu \) is carried by a denumerable union \(S \) of compact sets. Since \(\phi_S = 1 \) locally \(\mu \)-almost everywhere and \(S \) is \(\mu \)-moderated, one has

\[
g(x) = \int F(., x) \, d\mu = \int F(., x) \, d\mu
\]

for all \(x \in X \). As shown in [3], \(g \) is again locally \(\beta \)-integrable and is a determination of \(\mu \ast f \). In particular, \(g(x) < +\infty \) locally \(\beta \)-a.e.; in view of part (3) of Lemma 3, this means that \(F(., x) \) is essentially \(\mu \)-integrable for locally \(\beta \)-almost all \(x \) [2, §1, No. 3, Proposition 9].
The following application is a slight extension of [3, Chapter VIII, §4, No. 5, Proposition 10]:

Corollary. Let \(\beta \) be a relatively invariant, nonzero positive measure on \(G \), and let \(f, g \) be locally \(\beta \)-integrable functions on \(G \) such that \(f \) and \(g \) are convolvable relative to \(\beta \). If one of \(f, g \) is continuous or is zero outside a denumerable union of essentially \(\beta \)-integrable sets, then

\[
(f \ast g)(x) = \int g(s^{-1}x) \chi(s) \chi'(s^{-1}) d\beta(s) = \int f(xs^{-1})g(s) \chi'(s^{-1}) d\beta(s)
\]

for locally \(\beta \)-almost all \(x \).

Proof. Here \(\chi \) and \(\chi' \) denote the left and right multiplicators of \(\beta \), which are continuous [3, Chapter VII, §1, No. 8]. It is straightforward to show that the two essential integrals (or integrals) exist simultaneously and are then equal, thus it is immaterial whether the conditions are imposed on \(f \) or on \(g \). We can suppose \(f \geq 0, g \geq 0 \). Let \(\mu = f \cdot \beta \).

If \(g \) is continuous, one applies Case (i) of the Proposition to \(p \), \(g \).

Suppose \(f \) is zero outside \(S = \bigcup_{1}^{\infty} A_{n} \), where the \(A_{n} \) are essentially \(\beta \)-integrable. For each \(n \), let \(h_{n} \) be a \(\beta \)-integrable function such that \(\phi_{A_{n}} = h_{n} \) locally \(\beta \)-a.e. Let \(B_{n} = \{x : h_{n}(x) = 1\} \). From \(\phi_{B_{n}} = h_{n} \phi_{B_{n}} \), we see that \(B_{n} \) is \(\beta \)-integrable. Since \(h_{n}^{2} = h_{n} \) locally \(\beta \)-a.e., it results that \(h_{n} = \phi_{B_{n}} \) locally \(\beta \)-a.e. (indeed, \(\beta \)-a.e. [2, §1, No. 3, Lemma 1]), therefore \(\phi_{A_{n}} = \phi_{B_{n}} \) locally \(\beta \)-a.e. It follows easily that \(S \subset B \cup N \), where \(B = \bigcup_{1}^{\infty} B_{n} \) is \(\beta \)-moderated and \(N \) is locally \(\beta \)-negligible; one can even suppose that \(B \) is a denumerable union of compact sets [2, §1, No. 2, Proposition 5]. Since \(N \) is also locally negligible for \(\mu = f \cdot \beta \) [2, §5, No. 5, Theorem 2], it follows that \(\mu \) is carried by \(B \); thus we are in the situation of Case (iii) of the Proposition.

Remark. In the Corollary, it also suffices that one of \(f, g \) be equal locally \(\beta \)-a.e. to a continuous function. More generally, suppose \(f, g, f', g' \) are locally \(\beta \)-integrable functions such that \(f = f' \) locally \(\beta \)-a.e. and \(g = g' \) locally \(\beta \)-a.e. It is elementary that if \(f \) and \(g \) are convolvable relative to \(\beta \), then so are \(f' \) and \(g' \), and one then has \(f \ast g = f' \ast g' \) locally \(\beta \)-a.e. Suppose, in addition, that \(f \ast g \) has a determination \(h \) such that \(h(x) \), for locally \(\beta \)-almost all \(x \), is given by the (coexisting) integral formulas of the Corollary; for such an \(x \), the first formula shows that \(f \) may be replaced by \(f' \) (in both formulas), the second that \(g \) may be replaced by \(g' \); thus \(f' \ast g' \) is also given by such formulas locally \(\beta \)-a.e.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712