Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A general proof of Bing's shrinkability criterion


Authors: A. Marin and Y. M. Visetti
Journal: Proc. Amer. Math. Soc. 53 (1975), 501-507
MSC: Primary 54B15; Secondary 57A10
DOI: https://doi.org/10.1090/S0002-9939-1975-0388319-X
MathSciNet review: 0388319
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a proof of the general Bing shrinkability criterion, including a proof of the fundamental theorem that a shrinkable compact upper semicontinuous decomposition of a complete metric space is realized by a pseudo-isotopy of the space.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, A homeomorphism between the $ 3$-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354-362. MR 14, 192. MR 0049549 (14:192d)
  • [2] -, A decomposition of $ {E^3}$ into points and tame arcs such that the decomposition space is topologically different from $ {E^3}$, Ann. of Math. (2) 65 (1957), 484-500. MR 19, 1187. MR 0092961 (19:1187g)
  • [3] -, The cartesian product of a certain non-manifold and a line is $ {E^4}$, Bull. Amer. Math. Soc. 64 (1958), 82-84. MR 20 #3514. MR 0097034 (20:3514)
  • [4] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [5] R. D. Edwards and L. C. Glaser, A method for shrinking decomposition of certain manifolds, Trans. Amer. Math. Soc. 165 (1972), 45-56. MR 45 #4423. MR 0295357 (45:4423)
  • [6] L. F. McAuley, Some upper semi-continuous decompositions of $ {E^3}$ into $ {E^3}$, Ann. of Math. (2) 73 (1961), 437-457. MR 23 #A3554. MR 0126258 (23:A3554)
  • [7] -, Upper semicontinuous decompositions of $ {E^3}$ into $ {E^3}$ and generalizations to metric spaces, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 21-26. MR 25 #4502.
  • [8] K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10-14. MR 19, 299. MR 0087077 (19:299a)
  • [9] A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690-700. MR 19, 299. MR 0087078 (19:299b)
  • [10] I. A. Vainštein, On closed mappings of metric spaces, Dokl. Akad. Nauk SSSR 57 (1947), 319-321. (Russian) MR 9, 153. MR 0022067 (9:153b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B15, 57A10

Retrieve articles in all journals with MSC: 54B15, 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0388319-X
Keywords: Upper semicontinuous decomposition, shrinkable, pseudo-isotopy
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society