NORMAL SUBGROUPS CONTAINED IN THE FRATTINI SUBGROUP. II

W. MACK HILL

ABSTRACT. If \(p \) is an odd prime and \(H \) is a \(p \)-group with a characteristic subgroup \(K \) such that \(|K| > |K \cap Z(H)| = p \), then \(H \) cannot be a normal subgroup contained in the Frattini subgroup of any finite group \(G \).

We consider only finite groups. The order of the group \(G \) is \(|G|\), \(Z(G) \) is the center of \(G \), \(A(G) \) is the automorphism group of \(G \) and \(I(G) \) is the group of inner automorphisms. If \(G \) is nilpotent, \(cl(G) \) denotes its nilpotence class. Other notation is also standard.

Our aim is to prove the following

Theorem. Let \(H \) be a \(p \)-group, \(p \) an odd prime, with a characteristic subgroup \(K \) such that \(|K| > |K \cap Z(H)| = p \). Then \(H \) cannot be a normal subgroup contained in the Frattini subgroup of any finite group \(G \).

This result appears in [6] for arbitrary prime \(p \), but under the additional hypothesis that \(cl(K) \neq 2 \). It appears in [3] for the case that \(p \) is any prime and \(G \) is \(p \)-supersolvable. The case that \(|H| = |K| = p^3 \) is covered in [5].

With no loss of generality (see [6]), we take \(K = H \) and \(cl(H) = 2 \). Then \(H \) is extra-special. For a discussion of extra-special \(p \)-groups and their automorphisms the reader is referred to [1], [7], and [8].

Our argument is based on two lemmas, the first of which is mentioned in [2]. (The author is grateful to Professor David Goldschmidt for a very helpful conversation concerning this result.)

Lemma 1. If \(H \) is an extra-special \(p \)-group of exponent \(p \), \(p \) odd, then \(A(H) \) splits over \(I(H) \).

Proof. \(H = \langle x_1, x_2, \ldots, x_n, z \rangle \) with \(x_i^p = z^p = 1 \) for each \(i \) and \([x_1, x_2] = [x_3, x_4] = \cdots = [x_{n-1}, x_n] = z \). Further, \([x_i, x_j] = 1 \) unless \(\{i, j\} \) is one of \(\{1, 2\}, \{1, 3\}, \{1, 4\}, \ldots, \{n-1, n\} \). Each element of \(H \) has unique representation as \((\prod_{i=1}^n x_i^{a_i})z^b \) with \(0 \leq a_i, b < p \).

If \(\sigma \in A(H) \), then for each \(i \), \(\sigma(x_i) = (\prod_{j=1}^n x_j^{a_{ij}})z^{b_i} \) with \((a_{ij}) \in GL(n, p) \) and \(0 \leq b_i < p \). Further, \(\sigma \in I(H) \) if and only if \((a_{ij}) \) is the identity matrix.

Received by the editors December 16, 1974.

Key words and phrases. Extra-special \(p \)-group, Frattini subgroup.
Now the mapping \(r \) of \(\{x_1, x_2, \ldots, x_n, z\} \) into \(H \), defined by \(r(x_i) = x_i^{-1} \) (\(i = 1, 2, \ldots, n \)) and \(r(z) = z \), determines an automorphism \(r \in \text{Aut}(H) \), and \(C_A(H)(r) \) has trivial intersection with \(l(H) \). Let \(\sigma \) map \(H \) into \(H \) and \(\gamma \) map \(\{x_1, x_2, \ldots, x_n, z\} \) into \(H \) and suppose that for \(i = 1, 2, \ldots, n \),
\[
\sigma(x_i) = \left(\prod_{j=1}^{n} x_i^{a_{ij}} \right) z^{b_i} \quad \text{and} \quad \gamma(x_i) = \left(\prod_{j=1}^{n} x_i^{a_{ij}} \right) z^{c_i}.
\]
Consider the system of linear congruences
\[
\sum_{j=1}^{n} a_{ij} j = c_i - b_i \quad (\text{mod } p), \quad i = 1, 2, \ldots, n.
\]
If \((a_{ij}) \) is nonsingular, there exists a unique solution \((d_1, d_2, \ldots, d_n) \) with \(0 \leq d_i < p \). The mapping \(\rho \) of \(\{x_1, x_2, \ldots, x_n, z\} \) into \(H \) defined by \(\rho(x_i) = x_i^{d_i} \) (\(i = 1, 2, \ldots, n \)) and \(\rho(z) = z \) determines an inner automorphism \(\rho \in l(H) \) and
\[
\rho \sigma(x_i) = \rho \left(\left(\prod_{j=1}^{n} x_i^{a_{ij}} \right) z^{b_i} \right) = \left(\prod_{j=1}^{n} x_i^{a_{ij}} \right) z^{e_i} = \left(\prod_{j=1}^{n} x_i^{a_{ij}} \right) z^{c_i} = \gamma(x_i)
\]
where \(e_i = \sum_{j=1}^{n} a_{ij} d_j + b_i \). In particular, if \(\sigma \in \text{Aut}(H) \), then \(\gamma \) agrees with \(\rho \sigma \) on the generating set \(\{x_1, x_2, \ldots, x_n\} \) and, hence, determines an automorphism \(\gamma \in \text{Aut}(H) \) with \(\rho \gamma = \gamma \).

We now show that for arbitrary \(\tau \in \text{Aut}(H) \), the exponents \(c_i \) (\(i = 1, 2, \ldots, n \)) above can be selected so that \(\gamma \in C_A(H)(\tau) \). For \(i = 1, 2, \ldots, n \) let \(c_i \) be the unique solution of the linear congruence
\[
2t + f_i = 2t + \sum_{k=1}^{n-1} a_{ik} a_{i(k+1)} \equiv 0 \quad (\text{mod } p).
\]
Then
\[
\gamma \tau(x_i) = \gamma(x_i^{-1}) = \left(\prod_{j=1}^{n} x_i^{a_{ij}} \right)^{-1} z^{-c_i} = \left(\prod_{j=1}^{n} x_i^{-a_{ij}} \right) z^{-c_i - f_i} = \left(\prod_{j=1}^{n} x_i^{-a_{ij}} \right) z^{c_i} = \tau \left(\left(\prod_{j=1}^{n} x_i^{a_{ij}} \right) z^{c_i} \right) = \tau(y(x_i)).
\]
Thus, for each \(\tau \in \text{Aut}(H) \), there exists \(\rho \in l(H) \) and \(\gamma \in C_A(H)(\tau) \) such that \(\sigma = \rho^{-1} \gamma \), i.e. \(\text{Aut}(H) = l(H) C_A(H)(\tau) \). Hence, \(C_A(H)(\tau) \) complements \(l(H) \) in \(\text{Aut}(H) \), completing the proof of Lemma 1.

Lemma 2. If \(H \) is an extra-special \(p \)-group of exponent \(p^2 \), \(p \) odd, then \(H \) has a characteristic subgroup \(K \) of order \(p^2 \).

Proof. \(H = \langle x_1, x_2, \ldots, x_n, z \rangle \) with \(x_i^{p^2} = z^p = 1 \) (\(i = 2, 3, \ldots, n \)), \(x_1^{p^2} = z \) and \([x_1, x_2] = [x_3, x_4] = \cdots = [x_{n-1}, x_n] = z \). Further, \([x_i, x_j] = 1 \) unless \(\{i, j\} \) is one of \(\{1, 2\}, \{3, 4\}, \ldots, \{n-1, n\} \). The subgroup \(\langle z, x_2, \ldots, x_n \rangle \), consisting precisely of those elements in \(H \) satisfying \(x_i^p = 1 \), is characteristic in \(H \), and its center, also characteristic in \(H \), is...
NORMAL SUBGROUPS IN THE FRATTINI SUBGROUP

(z, x₂), of order p². Take K = ⟨z, x₂⟩. This proves Lemma 2.

Now, let H be an extra-special p-group, p odd. If the exponent of H is p, then Lemma 1 together with III. 3.2 and III. 3.13 of [7] implies that H cannot be a normal subgroup contained in the Frattini subgroup of any finite group G. If on the other hand the exponent of H is p², then H has a characteristic subgroup K of order p² (Lemma 2), which of necessity intersects Z(H) in a subgroup of order p. By [6], the desired conclusion follows, and the proof of the theorem is complete.

For the case p = 2, we have very little information. Again we lose no generality by taking H = K and cl(H) = 2. Thus, as before, H is extra-special. From (2), the splitting of A(H) over l(H) occurs for extra-special 2-groups of orders 2³ and 2⁵ and does not occur for those of order 2⁷ and larger. Hence, a 2-group H with characteristic subgroup K of order 2³ or 2⁵ and intersecting Z(H) in a subgroup of order 2 cannot be a normal subgroup contained in the Frattini subgroup of any finite group G. Since the splitting of A(H) over l(H) is only a sufficient condition for the above nonembeddability conclusion, the question remains open for extra-special 2-groups of larger orders.

Added in proof. Professor Homer Bechtell has observed that Griess' work (2) can be used to show that if H is an extra-special 2-group of order larger than 32, there exists a (nonsolvable) group G having Frattini subgroup H.

REFERENCES

DEPARTMENT OF MATHEMATICS, WORCESTER STATE COLLEGE, WORCESTER, MASSACHUSETTS 01602