Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Support properties of Gaussian processes over Schwartz space


Author: M. Ann Piech
Journal: Proc. Amer. Math. Soc. 53 (1975), 460-462
MSC: Primary 60G15; Secondary 28A40, 81.60
DOI: https://doi.org/10.1090/S0002-9939-1975-0391242-8
MathSciNet review: 0391242
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We utilize the concept of an abstract Wiener space to prove a converse to a theorem of Minlos, thereby obtaining necessary and sufficient conditions for a Hilbert subspace of $ \mathcal{S}'({{\text{R}}^d})$ to support a given Gaussian process over $ \mathcal{S}({{\text{R}}^d})$.


References [Enhancements On Off] (What's this?)

  • [1] J. Cannon, Continuous sample paths in quantum field theory, Comm. Math. Phys. 35 (1974), 215-233. MR 0351338 (50:3827)
  • [2] P. Colella and O. Lanford, Sample field behavior for the free Markov random field, Lecture Notes in Physics, vol. 25, Constructive Quantum Field Theory, Springer-Verlag, Berlin and New York, 1973. MR 0395513 (52:16310)
  • [3] R. M. Dudley, J. Feldman and L. Le Cam, On seminorms and probabilities, and abstract Wiener spaces, Ann. of Math. (2) 93 (1971), 390-408. MR 43 #4995. MR 0279272 (43:4995)
  • [4] I. M. Gel'fand and N. Ja. Vilenkin, Generalized functions. Vol. 4: Some applications of harmonic analysis, Fizmatgiz, Moscow, 1961; English transl., Academic Press, New York, 1964. MR 26 #4173; 30 #4152. MR 0435834 (55:8786d)
  • [5] L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist, and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part I, Univ. California Press, Berkeley, Calif., 1967, pp. 31-42. MR 35 #3027. MR 0212152 (35:3027)
  • [6] E. Nelson, Construction of quantum fields from Markoff fields, J. Functional Analysis 12 (1973), 97-112. MR 0343815 (49:8555)
  • [7] -, Probability theory and Euclidean field theory, Lecture Notes in Physics, vol. 25, Constructive Quantum Field Theory, Springer-Verlag, Berlin and New York, 1973. MR 0395513 (52:16310)
  • [8] M. Reed and L. Rosen, Support properties of the free measure for Boson fields, Comm. Math. Phys. 36 (1974), 123-132. MR 0351340 (50:3829)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G15, 28A40, 81.60

Retrieve articles in all journals with MSC: 60G15, 28A40, 81.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0391242-8
Keywords: Gaussian process, Schwartz space, free Boson field, abstract Wiener space
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society