Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Axiomatic shape theory


Author: Philip Bacon
Journal: Proc. Amer. Math. Soc. 53 (1975), 489-496
MSC: Primary 55D99
DOI: https://doi.org/10.1090/S0002-9939-1975-0420611-2
MathSciNet review: 0420611
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of shape theory is so defined that, if $ {\text{H}}$ is a category and $ {\text{W}}$ is a subcategory of $ {\text{H}}$, all shape theories on $ ({\text{H,}}\;{\text{W}})$ are isomorphic and, under a mild condition, a shape theory on $ ({\text{H,}}\;{\text{W}})$ always exists. Additional theorems facilitate the comparison of shape theories constructed by various means.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254. MR 37 #4811. MR 0229237 (37:4811)
  • [2] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [3] R. H. Fox, On shape, Fund. Math. 74 (1972), 47-71. MR 45 #5973. MR 0296914 (45:5973)
  • [4] H. Herrlich and G. E. Strecker, Category theory: An introduction, Allyn and Bacon, Boston, Mass., 1973. MR 0349791 (50:2284)
  • [5] W. Holsztyński, An extension and axiomatic characterization of Borsuk's theory of shape, Fund. Math. 70 (1971), 157-168. MR 43 #8080. MR 0282368 (43:8080)
  • [6] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Mich., 1965. MR 31 #6202. MR 0181977 (31:6202)
  • [7] G. Kozlowski and J. Segal, On the shape of 0-dimensional paracompacta, Fund. Math. 83 (1974), 151-154. MR 0334142 (48:12461)
  • [8] S. Mardešić, Shapes for topological spaces, General Topology and Appl. 3 (1973), 265-282. MR 48 #2988. MR 0324638 (48:2988)
  • [9] S. Mardešić and J. Segal, Shapes of compact and $ ANR$-systems, Fund. Math. 72 (1971), 41-59. MR 45 #7686. MR 0298634 (45:7686)
  • [10] E. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416. MR 28 #5421. MR 0162222 (28:5421)
  • [11] T. Porter, Generalized shape theory, Proc. Roy. Irish Acad. Ser. A 74 (1974), 33-48. MR 0367915 (51:4157)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55D99

Retrieve articles in all journals with MSC: 55D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0420611-2
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society