Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cylindricity of isometric immersions into Euclidean space


Author: Robert Maltz
Journal: Proc. Amer. Math. Soc. 53 (1975), 428-432
MSC: Primary 53C40
DOI: https://doi.org/10.1090/S0002-9939-1975-0643658-X
MathSciNet review: 0643658
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple geometric proof is given for the Hartman-Nirenberg cylindricity theorem and some generalizations. Then the following cylindricity theorem (unpublished) of S. Alexander is proved using the same idea.

Theorem. Let $ f:M \to {E^n}$ be an isometric Euclidean immersion of the Riemannian product $ M = {M_1} \times \ldots \times {M_k} \times {E^m}$ where the $ {M_i}$ are not everywhere flat Riemannian manifolds, and $ {E^m}$ denotes Euclidean $ m$-space. Then $ C \geqslant k$, where $ C$ denotes the codimension of the immersion; and if $ C = k$, then the immersion is cylindrical on the Euclidean factor.


References [Enhancements On Off] (What's this?)

  • [1] S. Alexander and R. Maltz, Isometric immersions of Riemannian products in Euclidean space, J. Differential Geometry (to appear). MR 0417990 (54:6035)
  • [2] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119-128. MR 46 #2597. MR 0303460 (46:2597)
  • [3] S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in euclidean space, Ann. of Math. (2) 56 (1952), 422-430. MR 14, 408. MR 0050962 (14:408e)
  • [4] P. Hartman, On the isometric immersions in Euclidean space of manifolds with nonnegative sectional curvatures. II, Trans. Amer. Math. Soc. 147 (1970), 529-540. MR 41 #7586. MR 0262981 (41:7586)
  • [5] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920. MR 23 #A4106. MR 0126812 (23:A4106)
  • [6] A. Lichnerowicz, Variétés kähleriennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geometry 6 (1971/72), 47-94. MR 45 #9274. MR 0300228 (45:9274)
  • [7] W. S. Massey, Surfaces of Gaussian curvature zero in Euclidean $ 3$-space, Tôhoku Math. J. (2) 14 (1962), 73-79. MR 25 #2527. MR 0139088 (25:2527)
  • [8] J. D. Moore, Isometric immersions of riemannian products, J. Differential Geometry 5 (1971), 159-168. MR 46 #6249. MR 0307128 (46:6249)
  • [9] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. (2) 20 (1968), 46-59. MR 37 #2138. MR 0226549 (37:2138)
  • [10] A. V. Pogorelov, Extensions of the theorem of Gauss on spherical representation to the case of surfaces of bounded extrinsic curvature, Dokl. Akad. Nauk SSSR 111 (1956), 945-947. (Russian) MR 19, 309. MR 0087147 (19:309b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40

Retrieve articles in all journals with MSC: 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1975-0643658-X
Keywords: Isometric immersions, Riemannian products, cylindricity
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society