Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Completely decomposable flat modules over locally factorial domains


Author: E. L. Lady
Journal: Proc. Amer. Math. Soc. 54 (1976), 27-31
DOI: https://doi.org/10.1090/S0002-9939-1976-0387265-6
MathSciNet review: 0387265
Full-text PDF

Abstract | References | Additional Information

Abstract: Rank $ 1$ flat modules are classified for a locally factorial noetherian domain by extending the concept of divisor. A direct sum of rank one flat modules in called completely decomposable. A summand of a completely decomposable module is a direct sum of homogeneous components but need not be completely decomposable.


References [Enhancements On Off] (What's this?)

  • [1] D. M. Arnold and E. L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225-237. MR 0417314 (54:5370)
  • [2] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
  • [3] R. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New York, 1973. MR 0382254 (52:3139)
  • [4] L. Fuchs, Infinite abelian groups, Vol. II, Academic Press, New York, 1973. MR 0349869 (50:2362)
  • [5] I. Kaplansky, Commutative rings, Univ. of Chicago Press, Chicago, Ill., 1974. MR 0345945 (49:10674)
  • [6] D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128. MR 40 #7310; erratum, 41, p. 1965. MR 0254100 (40:7310)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0387265-6
Keywords: Divisor, type, completely decomposable module, flat, Krull domain
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society