Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Arnold's formula for the dimension of a polynomial ring


Author: Paul Eakin
Journal: Proc. Amer. Math. Soc. 54 (1976), 11-15
DOI: https://doi.org/10.1090/S0002-9939-1976-0387270-X
MathSciNet review: 0387270
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: If $ R$ is a commutative integral domain with quotient field $ K$ and $ {x_1}, \ldots ,{x_n}$ are indeterminates, then there exist $ {\theta _1}, \ldots ,{\theta _n}$ in $ K$ such that $ \dim R[{x_1}, \ldots ,{x_n}] = n + \dim R[{\theta _1}, \ldots ,{\theta _n}]$.


References [Enhancements On Off] (What's this?)

  • [1] J. T. Arnold, On the dimension theory of overrings of an integral domain, Trans. Amer. Math. Soc. 138 (1969), 313-326. MR 39 #188. MR 0238824 (39:188)
  • [2] J. Arnold and R. Gilmer, On the dimension sequence of a commutative ring, Amer. J. Math. 90 (1974), 385-408. MR 0364221 (51:476)
  • [3] N. Bourbaki, Éléments de mathématique. Algèbre commutative, Actualités Sci. Indust., nos. 1290, 1293, 1308, Hermann, Paris, 1961-1965. MR 30 #2027; 33 #2660; 36#146; 41#5339. MR 0260715 (41:5339)
  • [4] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form $ D + M$, Michigan Math. J. 20 (1973), 79-95. MR 48 #2138. MR 0323782 (48:2138)
  • [5] J. Brewer, P. Montgomery, E. Rutter and W. Heinzer, Krull dimension of polynomial rings, Conference on Commutative Algebra, Lecture Notes in Math., vol. 311, Springer-Verlag, New York, 1973. MR 0337927 (49:2696)
  • [6] P. Jaffard, Théorie de la dimension dans les anneaux de polynomes, Mémor. Sci. Math., fasc. 146, Gauthier-Villars, Paris, 1960. MR 22 #8038. MR 0117256 (22:8038)
  • [7] W. Krull, Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Dimensions theorie, Math. Z. 54 (1951), 354-387. MR 13, 903. MR 0047622 (13:903c)
  • [8] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York and London, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [9] A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505-512. MR 14, #941. MR 0054571 (14:941c)
  • [10] -, On the dimension theory of rings. II, Pacific J. Math. 4 (1954), 603-614. MR 16, 441. MR 0065540 (16:441g)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0387270-X
Keywords: Krull dimension, polynomial ring
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society