Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the symmetry of matrix algebras


Author: Josef Wichmann
Journal: Proc. Amer. Math. Soc. 54 (1976), 237-240
DOI: https://doi.org/10.1090/S0002-9939-1976-0388110-5
MathSciNet review: 0388110
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: A $ ^{\ast}$-algebra is called symmetric, if each element of the form $ {a^{\ast}}a$ has nonnegative real spectrum. The study of locally compact groups with symmetric group algebras led to the following theorem: The tensoring of a Banach $ ^{\ast}$-algebra with the $ ^{\ast}$-algebra of all complex $ n \times n$ matrices preserves symmetry. In this note we prove, by a very simple algebraic argument, an analogue of it for arbitrary $ ^{\ast}$-algebras.


References [Enhancements On Off] (What's this?)

  • [1] D. W. Bailey, On symmetry in certain group algebras, Pacific J. Math. 24 (1968), 413-419. MR 39 #6085. MR 0244771 (39:6085)
  • [2] R. A. Bonic, Symmetry in group algebras of discrete groups, Pacific J. Math. 11 (1961), 73i-94. MR 22 #11281. MR 0120529 (22:11281)
  • [3] R. S. Doran, A generalization of a theorem of Civin and Yood on Banach $ ^{\ast}$-algebras, Bull. London Math. Soc. 4 (1972), 25-26. MR 46 #2442. MR 0303304 (46:2442)
  • [4] W. Glaser, Symmetrie von verallgemeinerten $ {L^1}$-Algebren, Arch. Math. 20 (1969), 656-660. MR 41 #7448. MR 0262843 (41:7448)
  • [5] K. B. Laursen, Symmetry of generalized group algebras, Proc. Amer. Math. Soc. 25 (1970), 318-322; erratum, ibid. 42 (1974), 646; MR 41 #843. MR 0256186 (41:843)
  • [6] H. Leptin, On symmetry of some Banach algebras, Pacific J. Math. 53 (1974), 203-206. MR 0370203 (51:6432)
  • [7] J. Wichmann, Hermitian $ ^{\ast}$-algebras which are not symmetric, J. London Math. Soc. (2) 8 (1974), 109-112. MR 0355614 (50:8088)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0388110-5
Keywords: Matrix algebra, $ ^{\ast}$-algebra, group algebra, symmetry
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society