SOME APPLICATIONS OF LANDWEBER-NOVIKOV OPERATIONS

DAVID M. SEGAL

Abstract. Previous results on the characteristic numbers of Sp-manifolds are extended in three different ways. I. It is shown that the primitive symplectic Pontrjagin class evaluated on a $4(2^r - 1)$ dimensional Sp-manifold always gives a number divisible by 8. This forms an analogue to a well-known result of Milnor concerning U-manifolds. II. It is shown that some of the results of Floyd as well as an analogue of the previous result can be obtained for 'pseudo-symplectic' manifolds. III. Results are generalised to (Sp,fr) manifolds.

1. $4(2^r - 1)$ dimensional Sp-manifolds. Let $s_\pi(p)[M]$, π a partition of $n = n(\pi)$, M a $4n(\pi)$ dimensional stably symplectic manifold, denote the normal symplectic Pontrjagin number of M corresponding to the π-symmetrised polynomial in a system of indeterminates for which the symplectic Pontrjagin classes are the elementary symmetric polynomials. Throughout this section we will set $k = 2^r - 1$ and M will denote a $4k$ dimensional stably symplectic manifold.

Theorem 1.1. $8 \mid s_{(k)}(p)[M]$.

Remarks. 1. The unitary analogue, $2 \mid s_{(k)}(c)[N]$, N stably unitary is well known; it could be proven by the techniques used below.

2. The techniques of [3] are not adequate by themselves to prove Theorem 1.1.

Proof. Actually we will prove slightly more: Let π be any partition of k all of whose parts are themselves integers of the form $2^s - 1$. Then $8 \mid s_\pi(p)[M]$.

If $\pi = (a_1, \ldots, a_r)$, let $D(\pi) = \prod_i [(2a_i + 2)!/2]$. Well known fact. $2 \mid \sum_{n(\pi)=k} (s_\pi(p)[M]/D(\pi))$. This is the 'Todd genus' relation of Stong [4] who put things in an 'abnormal' form; using normal rather than tangential numbers makes computation manageable. In particular, we can see that for a fixed k the denominators $D(\pi)$ with maximal number of factors of 2 will be just those for which all parts of π are of the form $2^s - 1$.

By Proposition 4 of [3] it is automatic that $4 \mid s_\pi(p)[M]$ for all π, $n(\pi) = k$. If we can show that $8 \mid s_\pi(p)[M]$ whenever $\pi = (a_1, \ldots, a_r)$, $n(\pi) = k$, $r > 1$
and all \(a_i \) of the form \(2^i - 1 \), then it will follow from the above that \(8 \mid s_{(k)}(p)[M] \).

Now assume inductively that Theorem 1.1 holds in dimensions less than \(4k \); by [4] it certainly holds in dimensions 4 and 12. Let \(\vec{a} = (a_1, \ldots, a_r) \) be a partition of \(k \) with \(r > 1 \) and all \(a_i \) of the form \(2^i - 1 \). Since \(\vec{a} \) is a partition of an odd number into odd parts there is a number \(k' \) which occurs exactly \(f \) times as a part of \(\vec{a} \), \(f \) odd. Let \(\vec{a}' \) denote the partition obtained from \(\vec{a} \) by deleting one occurrence of \(k' \). Let \(S(\vec{a}') \) denote the symplectic Landweber-Novikov operation corresponding to \(\vec{a}' \). Then from the results of [1] on the action of such operations,

\[
(1.2) \quad s_{(k')}(p)[S(\vec{a})M] = f s_{\vec{a}}(p)[M] + \sum_{\vec{a}} a(\vec{a}, \vec{a}, \vec{a}') s_{\vec{a}}(p)[M],
\]

where the summation on the right runs through all partitions \(\vec{a} \) obtained by adding \(k' \) to one of the parts of \(\vec{a}' \), and the coefficients \(a(\vec{a}, \vec{a}, \vec{a}') \) are integers which are in fact even as a consequence of the fact that the parts of \(\vec{a}' \) are all of the form \(2^i - 1 \). Then by Proposition 4 of [3] (and since \(n(\vec{a}) \) is odd), 8 divides the summation term. But by the inductive hypothesis, 8 divides the left side of (1.2). Our assertion and the theorem then follow from the oddness of \(f \).

2. Pseudo-symplectic manifolds. We call a \(U \)-manifold pseudo-symplectic if some nonzero multiple of its class in \(MU_* \) is in the image of \(MSp_* \); this will be the case if and only if every Chern number of the manifold involving an odd Chern class vanishes. Let \(Ps_* \) be the subring of \(MU_* \) consisting of such classes. Let \(j, p, d \) be the maps in the cofibration sequence of spectra

\[
MSp \to MU \to MU/MSp \to SMSp.
\]

There is a well-defined map \(h_{Ps}^*: Ps_* \to H_*(MSp) \) obtained by restricting the Hurewicz homomorphism \(h^*_{MU}: MU_* \to H_*(MU) \) to \(Ps_* \) and then composing with \(j_*^{-1} \). We regard the symplectic Pontrjagin numbers as defined on \(Ps_* \).

Note that \(Im h_{Ps} \subset Im h_{Ps} \subset H_*(MSp) \) (inclusions strict) and that \(Im h_{Ps}^*/Im h_{Ps}^* \) gives the torsion elements of \(Im p_* \) in the \((MU,MSp) \) exact bordism sequence.

Lemma 2.1. Let \(S(\pi): MSp \to S^{4n(\pi)}MSp \) be a symplectic Landweber-Novikov operation. Then we can find some \(U \)-bordism operation \(T: MU \to S^{4n(\pi)}MU \) such that \(T \circ j = S^{4n(\pi)}j \circ S(\pi) \).

Proof. Treat \(S^{4n(\pi)}j \circ S(\pi) \) as a class in \(MU^{4n(\pi)}(MSp) \). Now \(d_* (S^{d(\pi)}j \circ S(\pi)) = 0 \) in \(MU^{4n(\pi)+1}(MU/MSp) \) (since that group is trivial), so by exactness there must exist \(T \in MU^{4n(\pi)}(MU) \) such that \(j_* (T) = S^{d(\pi)}j \circ S(\pi) \).

This ‘compatibility’ lemma implies that \(Im h_{Ps}^* \) is closed under the action of the symplectic Landweber-Novikov operations.

Theorem 2.2. Let \(M \) be a 4k dimensional pseudo-symplectic manifold. Then

(i) \(2 \mid s_{n}(p)[M] \) if \(n(\pi) \) is odd or if \(\pi = (2^i) \);

(ii) \(4 \mid s_{k}(p)[M] \) if \(k = 2^i - 1 \).

Remark. Floyd first studied pseudo-symplectics (they are the ‘related
manifolds' of the title of [2]) and part (i) was proved by him by rather different methods.

Proof. Exactly as for symplectics in [3] except that one has weaker low-dimensional divisibility properties to feed into the machinery so that statements involving 4 become statements involving 2 while those involving 2 become vacuous. By the same token, part (ii) is done on the model of Theorem 1.1 above.

3. (Sp, fr) manifolds. Let \(h^*_\text{Sp,fr} : \text{MSp}/fr^\# \to H_*^{\text{fr}}(\text{MSp}/fr) \) be the Hurewicz map for \(\text{MSp}/fr \), the spectrum representing (Sp,fr) bordism. We wish to obtain divisibility conditions on characteristic numbers of (Sp,fr) manifolds. One would expect to use a compatibility lemma which showed that \(\text{Im } h^*_\text{Sp,fr} \) is closed under the action of symplectic Landweber-Novikov operations, find some 'starting' conditions and proceed as with the symplectic and pseudo-symplectic cases.

Actually something happens which makes our work easier (and our results stronger). If \(n(\pi) > 0 \) then \(S(\pi) \) can be lowered to a map \(S(\pi)' : \text{MSp}/fr \to S^{4n(\pi)} \text{MSp} \) so that \(S(\pi) \) actually sends the (Sp,fr) classes into full-fledged Sp-classes. Thus all the divisibility conditions of [3] hold equally for (Sp,fr) manifolds except in the starting dimensions:

Theorem 3.1. Let \(M \) be a \(4k(\text{Sp,fr}) \) manifold. Then

(i) \(4 | s_n(p)[M] \) if \(n(\pi) > 1 \) and odd or if \(\pi = (2^j), j > 1 \);

(ii) \(2 | s_n(p)[M] \) if \(n(\pi) > 2 \) and \(\equiv 2 (4) \) or if \(\pi = (2^j,2^i), j > 1 \).

The proof of Theorem 1.1 does not carry over to the (Sp,fr) case.

Bibliography

Department of Mathematics, City College, City University of New York, New York, New York 10031

Current address: Department of Mathematics, New York Institute of Technology, Old Westbury, New York 11568

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use