Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The starlike radius for classes of regular bounded functions


Author: Robert W. Sanders
Journal: Proc. Amer. Math. Soc. 54 (1976), 217-220
DOI: https://doi.org/10.1090/S0002-9939-1976-0390201-X
MathSciNet review: 0390201
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Let $ {B_0}(a)$ be the class of all functions $ f$ defined on $ \vert z\vert < 1$ such that (i) $ f(z)$ is regular, (ii) $ \vert f(z)\vert < 1$ (iii) $ f(0) = 0$ (iv) $ 0 < \vert f'(0)\vert = a \leqslant 1$. For fixed $ R,a \leqslant R < 1$, let $ {B_0}(a;R)$ be that subclass having nonzero zeros at $ z = {z_k},k = 1,2, \ldots $, such that $ \prod \vert{z_k}\vert = R$. The subclass having no nonzero zeros is designated as $ {B_0}(a;1)$. A sharp lower bound for $ \operatorname{Re} [zf'(z)/f(z)]$ for the class $ {B_0}(a;R),a \leqslant R \leqslant 1$, is obtained, and the radius of starlikeness is found. A covering theorem for the class is also obtained.


References [Enhancements On Off] (What's this?)

  • [1] J. Dieudonné (1931), Recherches sur quelques problèmes rélatifs aux polynômes et aux fonctions bornées, Ann. Sci. École Norm. Sup. (3) 48, 247-358. MR 1509314
  • [2] G. M. Goluzin (1969), Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R.I., p. 167. MR15, 112; 40 #308. MR 0247039 (40:308)
  • [3] E. Hille (1962), Analytic function theory. Vol. II, Introductions to Higher Math., Ginn, Boston, Mass., 1962, pp. 240, 323. MR34 #1490. MR 0201608 (34:1490)
  • [4] K. Hoffman (1962), Banach spaces of analytic functions, Prentice-Hall Ser. in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J. MR24 #A2844. MR 0133008 (24:A2844)
  • [5] M. Robertson (1936), On the theory of univalent functions, Ann. of Math. 37, 374-408. MR 1503286
  • [6] H. S. Wall (1948), Analytic theory of continued fractions, Van Nostrand, Princeton, N.J., pp. 275-276. MR10, 32. MR 0025596 (10:32d)
  • [7] M. Ziegler (1971), Solutions of advanced problems. Best radii of univalency, Amer. Math. Monthly 78, 1031-1032. MR 1536517


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0390201-X
Keywords: Starlike radius, bounded functions
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society