Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positive sectional curvatures does not imply positive Gauss-Bonnet integrand


Author: Robert Geroch
Journal: Proc. Amer. Math. Soc. 54 (1976), 267-270
DOI: https://doi.org/10.1090/S0002-9939-1976-0390961-8
MathSciNet review: 0390961
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: An example is given, in dimension six, of a curvature tensor having positive sectional curvatures and negative Gauss-Bonnet integrand.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Bishop and S. I. Goldberg, Some implications of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc. 112 (1964), 508-535. MR 29 #574. MR 0163271 (29:574)
  • [2] S. S. Chern, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126. MR 17, 783. MR 0075647 (17:783e)
  • [3] A. Gray, The six-dimensional Gauss-Bonnet integrand (to appear). MR 0312444 (47:1001)
  • [4] H. Samelson, On curvature and characteristic classes of homogeneous spaces, Michigan Math. J. 5 (1958), 13-18. MR 21 #2277. MR 0103509 (21:2277)
  • [5] J. A. Thorpe, Some remarks on the Gauss-Bonnet integral, J. Math. Mech. 18 (1969), 779-786. MR 41 #963. MR 0256307 (41:963)
  • [6] A. Weinstein, Remarks on curvature and the Euler integrand, J. Differential Geometry 6 (1971/72), 259-262. MR 45 #7641. MR 0298589 (45:7641)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0390961-8
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society