EXTENSIONS OF CONTINUOUS FUNCTIONS
FROM DENSE SUBSPACES

ROBERT L. BLAIR

Abstract. Let X and Y be topological spaces, let S be a dense subspace of X, and let $f: S \to Y$ be continuous. When Y is the real line \mathbb{R}, the Lebesgue sets of f are used to provide necessary and sufficient conditions in order that the (bounded) function f have a continuous extension over X. These conditions yield the theorem of Taimanov (resp. of Engelking and of Blefko and Mrówka) which characterizes extendibility of f for Y compact (resp. realcompact). In addition, an extension theorem of Blefko and Mrówka is sharpened for the case in which X is first countable and Y is a closed subspace of \mathbb{R}.

We first quote (in Theorem 1) two basic results concerning extension of a continuous function from a dense subspace of a topological space. Theorem 1A is due to Taimanov [10] (see also [5, Theorem 3.2.1]) and, in dual form, to Eilenberg and Steenrod [3, Lemma 10.9.6] (cf. [5, Exercise 3.2A]). Theorem 1B is due, independently, to Engelking [4, Theorem 2] and to Blefko and Mrówka [2, Theorem A]. (Theorem A of [2] includes the unneeded hypothesis that X is T_1.) For additional results on extension of continuous functions from dense subspaces, see McDowell [7].

Theorem 1. Let X and Y be topological spaces, let S be a dense subspace of X, and let $f: S \to Y$ be continuous.

A (TAIMANOV). If Y is compact (Hausdorff), then these are equivalent:
1. f extends continuously over X.
2. If F_1 and F_2 are disjoint closed subsets (or, alternatively, zero-sets) of Y, then $f^{-1}(F_1)$ and $f^{-1}(F_2)$ have disjoint closures in X.

B (ENGELKING AND BLEFKO-MRÓWKA). If Y is realcompact, then these are equivalent:
1. f extends continuously over X.
2. If $\{F_n\}_{n=1}^\infty$ is any sequence of closed subsets (or, alternatively, zero-sets) of Y with $\bigcap_{n=1}^\infty F_n = \emptyset$, then $\bigcap_{n=1}^\infty \text{cl}_X f^{-1}(F_n) = \emptyset$.

By a zero-set is meant the set of zeros of a real-valued continuous function. For the theory of realcompact spaces, see Gillman and Jerison [6].

Received by the editors July 31, 1974.

AMS (MOS) subject classifications (1970). Primary 54C05, 54C20, 54C30; Secondary 54C45, 54D30, 54D60.

Key words and phrases. Continuous function, real-valued continuous function, continuous extension, dense subspace, compact space, realcompact space, zero-set, Lebesgue set, C^*-embedded, C-embedded, first countable space.

© American Mathematical Society 1976

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In this note we obtain a sharper version of Theorem 1A (resp. 1B) for the special case in which \(f \) is a bounded continuous function (resp. continuous function) from \(S \) into the real line \(\mathbb{R} \); this is Theorem 2 below. Theorem 1, in turn, will follow readily from Theorem 2. We also include a sharpening (for real-valued functions) of a theorem of Blefko and Mrówka concerning extension of a continuous function from a dense subspace of a first countable space [2, Theorem D] (see Theorem 3 below).

If \(X \) is a topological space, then \(C(X) \) (resp. \(C^*(X) \)) will denote the set of all continuous (resp. bounded continuous) real-valued functions on \(X \). If \(f \in C(X) \) and \(a \in \mathbb{R} \), we set

\[
L_a(f) = \{ x \in X : f(x) \leq a \}, \quad L^a(f) = \{ x \in X : f(x) \geq a \}.
\]

Sets of the form \(L_a(f) \) or \(L^a(f) \) are Lebesgue sets of \(f \). The point of Theorem 2 (which may be viewed as an analogue of [6, 1.18]) is that it characterizes extendibility of \(f \) in terms of the Lebesgue sets of \(f \). (Theorem 2 is thus a fragment of a general program whereby real-valued functions are studied by means of their Lebesgue sets; see, e.g., [8], [9], and [1, §§2–3]. Other aspects of this program will be treated by the author elsewhere.)

Theorem 2. Let \(S \) be a dense subspace of a topological space \(X \), let \(f \in C(S) \), and consider these conditions on \(f \):

(a) \(f \) extends continuously over \(X \).

(b) Disjoint Lebesgue sets of \(f \) have disjoint closures in \(X \).

(c) \(\bigcap_{n=1}^{\infty} \text{cl}_X (L_{-n}(f) \cup L^n(f)) = \emptyset \).

Then (a) is equivalent to the conjunction of (b) and (c); and if \(f \in C^*(S) \), (a) is equivalent to (b).

Proof. First assume (a), so that \(f = g|S \) for some \(g \in C(X) \). To verify (b), we need only note that if \(a < b \), then

\[
\text{cl}_X L_a(f) \cap \text{cl}_X L_b(f) \subset L_a(g) \cap L_b(g) = \emptyset.
\]

To verify (c), let \(p \in X \). choose \(n \geq |g(p)| + 1 \), and note that \(\{ x \in X : |g(x) - g(p)| < 1 \} \) is a neighborhood of \(p \) in \(X \) which misses \(L_{-n}(f) \cup L^n(f) \).

Observe next that, to verify (a), it suffices to show that \(f \) has an extension \(f_p \in C(S \cup \{ p \}) \) for every \(p \in X \). (For then \(g : X \to \mathbb{R} \) can be defined by \(g = f \) on \(S \) and \(g(p) = f_p(p) \) for \(p \in X - S \); and since \(S \) is dense in \(X \), \(g \) is continuous [6, 6H].) For the remainder of the proof, we may therefore assume that \(X = S \cup \{ p \} \), with \(p \notin S \).

Assume (b) and (c), and let \(A = \{ s \in \mathbb{R} : p \in \text{cl} L^s(f) \} \), \(B = \{ r \in \mathbb{R} : p \in \text{cl} L_r(f) \} \). Since \(X = \text{cl} S \), (c) implies that there is an \(n \) such that \(p \in \text{cl} L_n(f) \cap \text{cl} L^{-n}(f) \). Hence both \(A \) and \(B \) are nonempty. Moreover, by (b), we have \(s \leq r \) for every \(s \in A \) and every \(r \in B \). Let \(s^* = \sup A \), \(r^* = \inf B \), and note that \(s^*_\leq r^* \). If \(s^* < r^* \), there is \(t \in \mathbb{R} \) with \(s^* < t < r^* \); but then \(p \notin \text{cl}(L_{t}(f) \cup L^t(f)) = \text{cl} S \), a contradiction. Thus \(s^* = r^* \). Define \(g : X \to \mathbb{R} \) by \(g = f \) on \(S \) and \(g(p) = s^* = r^* \). We verify that \(g \) is continuous at each point of \(X \):
Let \(x \in X, \epsilon > 0 \), and \(V = (g(x) - \epsilon, g(x) + \epsilon) \).

Case 1. \(x = p \). Let \(U = X - \text{cl}(L_{g(p)}(f) \cup L_{g(x)}^*(f)) \). Since \(g(p) - \epsilon < s \leq r < g(p) + \epsilon \) for some \(s \in A \) and \(r \in B \), it follows from (b) that \(p \in U \), and clearly \(g(U) \subseteq V \).

Case 2. \(x \in S \). There is an open neighborhood \(W \) of \(x \) in \(S \) with \(f(W) \subseteq (g(x) - (\epsilon/3), g(x) + (\epsilon/3)) \). Write \(W = S \cap G \), with \(G \) open in \(X \). If \(p \notin G \), then \(g(G) = f(W) \subseteq V \), so we may assume that \(p \in G \). Now \(W \subseteq L_{g(x)}^*(f) \), so we have \(p \in \text{cl} G = \text{cl} W \subseteq \text{cl} L_{g(x)}^*(f) \). If \(g(p) < g(x) - (2\epsilon/3) \), there is \(r \in B \) with \(r < g(x) - (2\epsilon/3) \). But then \(p \in \text{cl} L_{g(x)}(f) \subseteq \text{cl} L_{g(x)}^*(f) \), which is contrary to (b). Thus \(g(p) > g(x) - (2\epsilon/3) \), and, similarly, \(g(p) \leq g(x) + (2\epsilon/3) \). We conclude that \(g(G) \subseteq V \), and hence \(g \) is a continuous extension of \(f \).

To complete the proof, note that if \(f \in C^*(S) \) and if \(n > |f| \), then \(L_n(f) \cup L_n^*(f) = \emptyset \), so (c) holds automatically.

Proof of Theorem 1. \(A(1) \Rightarrow A(2) \). Assume that \(f = g|S \), with \(g : X \to Y \) continuous. If \(F_1 \) and \(F_2 \) are disjoint closed subsets of \(Y \), then
\[
\text{cl}_X f^{-1}(F_1) \cap \text{cl}_X f^{-1}(F_2) \subseteq g^{-1}(F_1) \cap g^{-1}(F_2) = \emptyset.
\]

Similarly, \(B(1) \Rightarrow B(2) \).

\(A(2) \Rightarrow A(1) \) (resp. \(B(2) \Rightarrow B(1) \)). We may assume that the compact (resp. realcompact) space \(Y = \prod_{a \in I} Y_a \), where \(Y_a = [0,1] \) (resp. \(Y_a = \mathbb{R} \)) for each \(a \in I \) (see [6, 11.12]). Let \(f_a = \left(\text{pr}_a \right)|Y \circ f \), where \(\text{pr}_a \) is the projection of the product \(Y \) of index \(a \). It suffices to show that each \(f_a \) satisfies (b) (resp. (b) and (c)) of Theorem 2. (For then \(f_a \) has a continuous extension \(g_a : X \to Y_a \), the diagonal map \(g = \Delta_{a \in I} g_a : X \to Y \) is continuous, \(g = f \) on \(S \), and \(g(X) = g(\text{cl} S) \subseteq \text{cl} g(S) \subseteq Y \); cf. [4, Lemma 1].) For each \(a \in \mathbb{R} \), let \(Z_a = Y \cap \text{pr}_a^{-1}((\infty, a]) \), \(Z^a = Y \cap \text{pr}_a^{-1}([a, +\infty)) \). Note that \(Z_a \) and \(Z^a \) are zero-sets in \(Y \) and that \(L_{Z_a}(f_a) = f^{-1}(Z_a) \), \(L^a(f_a) = f^{-1}(Z^a) \). It follows from (the zero-set formulation of) either \(A(2) \) or \(B(2) \) that if \(a < b \), then \(L_{Z_a}(f_a) \) and \(L^a(f_a) \) have disjoint closures in \(X \); hence (b) holds in either case. Moreover, \(\bigcap_{n=1}^{\infty} (Z_n \cup Z^*) = \emptyset \), so (the zero-set formulation of) \(B(2) \) implies that \(\bigcap_{n=1}^{\infty} \text{cl}_X (L_{Z_n}(f_a) \cup L^a(f_a)) = \emptyset \). Thus (c) holds, and the proof is complete.

We note that, by a similar argument, Theorem C of [2] is also an easy consequence of Theorem 2.

A subset \(S \) of a topological space \(X \) is \(C^*\)-embedded (resp. \(C\)-embedded) in \(X \) in case every \(f \in C^*(S) \) (resp. \(f \in C(S) \)) has a continuous extension over \(X \). The following corollary (formulated and proved in [6, Theorems 6.4 and 8.6] in the context of Tychonoff spaces; cf. [11]) is an immediate consequence of either Theorem 1 or Theorem 2.

Corollary. Let \(S \) be a dense subspace of a topological space \(X \).
A. These are equivalent:
 (1) \(S \) is \(C^*\)-embedded in \(X \).
 (2) Any two disjoint zero-sets in \(S \) have disjoint closures in \(X \).
B. These are equivalent:
 (1) \(S \) is \(C\)-embedded in \(X \).
(2) If a countable family of zero-sets in S has empty intersection, then their closures in X have empty intersection.

It is known that (the closed set formulation of) Theorem 1A holds if Y is merely Tychonoff, provided that X is first countable [2, Theorem D]. For the special case in which Y is a closed subset of \mathbb{R}, we can apply Theorem 2 to sharpen this result as follows:

Theorem 3. Let S be a dense subspace of a topological space X, assume each $p \in X - S$ has a countable base of neighborhoods, let Y be a closed subspace of \mathbb{R}, and let $f : S \to Y$ be continuous. Then these are equivalent:

1. f extends continuously over X.
2. If F_1 and F_2 are disjoint countable closed subsets of Y, then $f^{-1}(F_1)$ and $f^{-1}(F_2)$ have disjoint closures in X.

Proof. (1) \Rightarrow (2). This follows as in the proof of A(1) \Rightarrow A(2) of Theorem 1.

(2) \Rightarrow (1). It suffices to show that f (regarded as a function from S into \mathbb{R}) has a continuous extension $g : X \to \mathbb{R}$. (For then $g(X) = g(\text{cl } S) \subset \text{cl } g(S) \subset Y$.) We verify that $f : S \to \mathbb{R}$ satisfies (b) and (c) of Theorem 2.

Suppose first that (b) fails. Then for some $a < b$ there exists $p \in \text{cl } L_a(f) \cap \text{cl } L_b(f)$. Obviously $p \in X - S$, so p has a countable base of neighborhoods $\{U_n\}_{n=1}^{\infty}$. Choose $c \in \mathbb{R}$ with $a < c < b$. We shall show that there is a countable closed subset F_1 of \mathbb{R} with $p \in \text{cl } f^{-1}(F_1 \cap Y)$ and $F_1 \subset (c, +\infty)$.

Case 1. $s^* < +\infty$. For each $n > 0$, we have $a \vee (s^* - (1/n)) < s^*$, so there is $s(n) \in \mathbb{R}$ with $p \in \text{cl } L_{s(n)}(f)$ and $a \vee (s^* - (1/n)) < s(n)$. Moreover, $p \not\in \text{cl } L_{s^*+(1/n)}(f)$, so there exists a point x_n with

$$x_n \in U_n \cap (X - \text{cl } L_{s^*+(1/n)}(f)) \cap L_{s(n)}(f).$$

Let $F_1 = \{f(x_n) : n = 1, 2, \ldots\} \cup \{s^*\}$. Since $|f(x_n) - s^*| < 1/n$, we have $f(x_n) \to s^*$, and hence F_1 is closed in \mathbb{R}. Clearly $p \in \text{cl } f^{-1}(F_1 \cap Y)$ and $F_1 \subset (c, +\infty)$.

Case 2. $s^* = +\infty$. Construct a sequence $(x_n)_{n=1}^{\infty}$ as follows: Pick $x_1 \in U_1 \cap L^b(f)$; and if x_1, \ldots, x_{n-1} have already been chosen with $x_i \in U_i \cap L^b(f)$ and $f(x_i) > f(x_{i-1}) \lor i$ ($i = 2, \ldots, n - 1$), choose $s \in \mathbb{R}$ with $p \in \text{cl } L^b(f)$ and $f(x_{n-1}) \lor n < s$, and pick $x_n \in U_n \cap L^b(f)$. Then $(f(x_n))_{n=1}^{\infty}$ is strictly increasing and $f(x_n) \to +\infty$, so $F_1 = \{f(x_n) : n = 1, 2, \ldots\}$ is closed in \mathbb{R}. Moreover, $x_n \in U_n \cap L^b(f)$ for all n, so we have $p \in \text{cl } f^{-1}(F_1 \cap Y)$ and $F_1 \subset (c, +\infty)$.

Similarly, there is a countable closed subset F_2 of \mathbb{R} with

$$p \in \text{cl } f^{-1}(F_2 \cap Y) \quad \text{and} \quad F_2 \subset (-\infty, c).$$

Thus (2) fails.

Suppose next that (c) of Theorem 2 fails. Then there exists $p \in \bigcap_{n=1}^{\infty} \text{cl}_X(L_{n-1}(f) \cup L_n(f))$, and clearly $p \in X - S$. Let $(U_n)_{n=1}^{\infty}$ be a countable base of neighborhoods at p with $U_n \subset U_{n+1}$ for each n. Pick

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
$x_1 \in U_1 \cap (L_{-1}(f) \cup \overline{L^1(f)})$; and if x_1, \ldots, x_{n-1} have already been chosen with $x_i \in U_i \cap (L_{-i}(f) \cup \overline{L^i(f)})$ and $|f(x_i)| > |f(x_{i-1})|$ \forall (i = 2, \ldots, n - 1), let $m(n)$ be the least integer $\geq |f(x_{n-1})|$ $\forall n$, and pick $x_n \in U_n \cap (L_{-m(n)}(f) \cup \overline{L^{m(n)}(f)})$. We thus construct a sequence $(x_n)_{n=1}^\infty$ with $x_n \in U_n \{ |f(x_n)| \}_{n=1}^\infty$ strictly increasing, and $|f(x_n)| \to \infty$. Let

$$F_1 = \{ r \in \mathbb{R} : |r| = |f(x_n)| \text{ for some } n, n \text{ odd} \},$$

$$F_2 = \{ r \in \mathbb{R} : |r| = |f(x_n)| \text{ for some } n, n \text{ even} \}.$$

Then F_1 and F_2 are disjoint countable closed subsets of \mathbb{R} with

$$p \in \cl f^{-1}(F_1 \cap Y) \cap \cl f^{-1}(F_2 \cap Y),$$

so (2) fails once again. The proof is therefore complete.

We leave open the question of possible generalizations of Theorem 3 (for Tychonoff spaces Y that are not necessarily closed subspaces of \mathbb{R}).

REFERENCES

8. S. Mrówka, On some approximation theorems, Nieuw Arch. Wisk. 16 (1968), 94—111. MR 39 #6251.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701