Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extensions of continuous functions from dense subspaces


Author: Robert L. Blair
Journal: Proc. Amer. Math. Soc. 54 (1976), 355-359
DOI: https://doi.org/10.1090/S0002-9939-1976-0390999-0
Correction: Proc. Amer. Math. Soc. 106 (1989), 857-858.
MathSciNet review: 0390999
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Let $ X$ and $ Y$ be topological spaces, let $ S$ be a dense subspace of $ X$, and let $ f:S \to Y$ be continuous. When $ Y$ is the real line $ {\mathbf{R}}$, the Lebesgue sets of $ f$ are used to provide necessary and sufficient conditions in order that the (bounded) function $ f$ have a continuous extension over $ X$. These conditions yield the theorem of Taimanov (resp. of Engelking and of Blefko and Mrówka) which characterizes extendibility of $ f$ for $ Y$ compact (resp. realcompact). In addition, an extension theorem of Blefko and Mrówka is sharpened for the case in which $ X$ is first countable and $ Y$ is a closed subspace of $ {\mathbf{R}}$.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Blair, Filter characterizations of $ z{\text{ - }},{C^{\ast}}{\text{ - }}$, and $ C$-embeddings, Fund. Math. (to appear). MR 0415564 (54:3649)
  • [2] R. Blefko and S. Mrówka, On the extensions of continuous functions from dense subspaces, Proc. Amer. Math. Soc. 17 (1966), 1396-1400. MR 34 #1989. MR 0202115 (34:1989)
  • [3] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952. MR 14, 398. MR 0050886 (14:398b)
  • [4] R. Engelking, Remarks on real-compact spaces, Fund. Math. 55 (1964), 303-308. MR 31 #4000. MR 0179757 (31:4000)
  • [5] -, Outline of general topology, PWN, Warsaw, 1965; English transl., North-Holland, Amsterdam; Interscience, New York, 1968. MR 36 #4508; MR 37 #5836. MR 0230273 (37:5836)
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [7] R. H. McDowell, Extension of functions from dense subspaces, Duke Math. J. 25 (1958), 297-304. MR 20 #4251. MR 0097784 (20:4251)
  • [8] S. Mrówka, On some approximation theorems, Nieuw Arch. Wisk. 16 (1968), 94-111. MR 39 #6251. MR 0244938 (39:6251)
  • [9] -, Characterization of classes of functions by Lebesgue sets, Czechoslovak Math. J. 19 (94) (1969), 738-744. MR 40 #1543. MR 0248291 (40:1543)
  • [10] A. D. Taimanov, On the extension of continuous mappings of topological spaces, Mat. Sb. 31 (73) (1952), 459-462. (Russian) MR 14, 395. MR 0050871 (14:395a)
  • [11] B. Z. Vulih, On the extension of continuous functions in topological spaces, Mat. Sb. 30 (72) (1952), 167-170. (Russian) MR 14, 70. MR 0048790 (14:70c)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0390999-0
Keywords: Continuous function, real-valued continuous function, continuous extension, dense subspace, compact space, realcompact space, zero-set, Lebesgue set, $ {C^{\ast}}$embedded, $ C$-embedded, first countable space
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society