Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalized Morse sequences on $ n$ symbols


Author: John C. Martin
Journal: Proc. Amer. Math. Soc. 54 (1976), 379-383
DOI: https://doi.org/10.1090/S0002-9939-1976-0391058-3
MathSciNet review: 0391058
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: A class of bisequences on $ {\text{n}}$ symbols is constructed which includes the generalized Morse sequences introduced by Keane. The topological structure and endomorphisms of the resulting minimal symbolic flows are described.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Coven, Endomorphisms of substitution minimal sets, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971/72), 129-133. MR 46 #6332. MR 0307212 (46:6332)
  • [2] E. M. Coven and M. S. Keane, The structure of substitution minimal sets, Trans. Amer. Math. Soc. 162 (1971), 89-102. MR 44 #2219. MR 0284995 (44:2219)
  • [3] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969. MR 42 #2463. MR 0267561 (42:2463)
  • [4] W. H. Gottschalk, Substitution minimal sets, Trans. Amer. Math. Soc. 109 (1963), 467-491. MR 32 #8325. MR 0190915 (32:8325)
  • [5] W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R.I., 1955. MR 17, 650. MR 0074810 (17:650e)
  • [6] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 41 #4510. MR 0259881 (41:4510)
  • [7] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [8] S. Kakutani, Ergodic theory of shift transformations, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part 2, Univ. of California Press, Berkeley, Calif., 1967, pp. 405-414. MR 37 #2943. MR 0227358 (37:2943)
  • [9] M. S. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 335-353. MR 39 #406. MR 0239047 (39:406)
  • [10] J. C. Martin, Substitution minimal flows, Amer. J. Math. 93 (1971), 503-526. MR 45 #9307. MR 0300261 (45:9307)
  • [11] W. A. Veech, Point-distal flows, Amer. J. Math. 92 (1970), 205-242. MR 42 #2462. MR 0267560 (42:2462)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0391058-3
Keywords: Almost periodic, symbolic flow, distal point, equicontinuous factor, almost automorphic extension, isometric extension, substitution minimal set
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society