Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A geometric interpretation of a classical group cohomology obstruction


Author: R. O. Hill
Journal: Proc. Amer. Math. Soc. 54 (1976), 405-412
DOI: https://doi.org/10.1090/S0002-9939-1976-0391089-3
MathSciNet review: 0391089
Full-text PDF

Abstract | References | Additional Information

Abstract: For a non-Abelian group $ G$, we show that the obstruction to the existence of an extension of $ G$ by $ \Pi $ that induces $ \phi :\Pi \to $ Out $ G$ is also the $ k$-invariant of the classifying space for $ K(G,1)$-bundles.


References [Enhancements On Off] (What's this?)

  • [1] M. G. Barratt, V. K. A. M. Gugenheim and J. C. Moore, On semisimplicial fibre-bundles, Amer. J. Math. 81 (1959), 639-657. MR 22 #1895. MR 0111028 (22:1895)
  • [2] A. Bousfield and D. M. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972. MR 0365573 (51:1825)
  • [3] S. Eilenberg, Homology of spaces with operators. I, Trans. Amer. Math. Soc. 61 (1947), 378-417; errata, ibid. 62 (1947), 548. MR 9, 52. MR 0021313 (9:52b)
  • [4] S. Eilenberg and S. Mac Lane, Cohomology theory in abstract groups. I, II, Ann. of Math. (2) 48 (1947), 51-78, 326-341. MR 8, 367; 9, 7.
  • [5] S. Gitler, Cohomology operations with local coefficients, Amer. J. Math. 85 (1963), 156-188. MR 28 #1621. MR 0158398 (28:1621)
  • [6] D. H. Gottlieb, On fibre spaces and the evaluation map, Ann. of Math. (2) 87 (1968), 42-55; correction, ibid. (2) 91 (1970), 640-642. MR 36 #4560; 41 #7684. MR 0221508 (36:4560)
  • [7] R. O. Hill, Jr., On characteristic classes of groups and bundles of $ K(\Pi ,1)'s$, Proc. Amer. Math. Soc. 40 (1973), 597-603. MR 47 #7737. MR 0319192 (47:7737)
  • [8] J. F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17. MR 45 #6002. MR 0296943 (45:6002)
  • [9] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
  • [10] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR 36 #5942. MR 0222892 (36:5942)
  • [11] F. Nussbaum, Thesis, Northwestern University, 1970.
  • [12] -, Semi-principal bundles and stable nonorientable obstruction theory (to appear).
  • [13] P. Olum, On mappings into spaces in which certain homotopy groups vanish, Ann. of Math. (2) 57 (1953), 561-574. MR 14, 895. MR 0054250 (14:895b)
  • [14] -, Factorizations and induced homomorphisms, Advances in Math. 3 (1969), 72-100. MR 38 #6590. MR 0238314 (38:6590)
  • [15] J. Siegal, Higher order cohomology operations in local coefficient theory, Amer. J. Math. 89 (1967), 909-931. MR 37 #913. MR 0225319 (37:913)
  • [16] -, $ k$-invariants in local coefficient theory, Proc. Amer. Math. Soc 29 (1971), 169-174. MR 46 #6344. MR 0307224 (46:6344)
  • [17] C. Robinson, Moore-Postnikov systems for non-simple fibrations, Illinois J. Math. 16 (1972), 234-242. MR 0298664 (45:7714)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0391089-3
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society