Conjugate powers in HNN groups

Author:
Michael Anshel

Journal:
Proc. Amer. Math. Soc. **54** (1976), 19-23

MathSciNet review:
0393249

Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Our purpose is to show the conjugacy problem is solvable for certain groups with many stable letters and in the process investigate conjugate powers in these groups.

**[1]**Michael Anshel,*Non-Hopfian groups with fully invariant kernels. II*, J. Algebra**24**(1973), 473–485. MR**0313406****[2]**Michael Anshel and Peter Stebe,*The solvability of the conjugacy problem for certain HNN groups*, Bull. Amer. Math. Soc.**80**(1974), 266–270. MR**0419615**, 10.1090/S0002-9904-1974-13455-5**[3]**Benjamin Baumslag,*Generalized free products whose two-generator subgroups are free*, J. London Math. Soc.**43**(1968), 601–606. MR**0233896****[4a]**Gilbert Baumslag,*On generalised free products*, Math. Z.**78**(1962), 423–438. MR**0140562****[4b]**-,*Lecture notes in nilpotent groups*, CBMS Regional Conf. Ser. in Math., no. 2, Amer. Math. Soc., Providence, R.I., 1971. MR**44**#315.**[5]**C. R. J. Clapham,*The conjugacy problem for a free product with amalgamation*, Arch. Math. (Basel)**22**(1971), 358–362. MR**0306338****[6]**A. Karrass and D. Solitar,*The free product of two groups with a malnormal amalgamated subgroup*, Canad. J. Math.**23**(1971), 933–959. MR**0314992****[7]**A. G. Kurosh,*The theory of groups*, Chelsea Publishing Co., New York, 1960. Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes. MR**0109842****[8]**Seymour Lipschutz,*Generalization of Dehn’s result on the conjugacy problem*, Proc. Amer. math. Soc.**17**(1966), 759–762. MR**0197541**, 10.1090/S0002-9939-1966-0197541-1**[9]**Wilhelm Magnus,*Noneuclidean tesselations and their groups*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 61. MR**0352287****[10]**Wilhelm Magnus, Abraham Karrass, and Donald Solitar,*Combinatorial group theory: Presentations of groups in terms of generators and relations*, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. MR**0207802****[11]**Charles F. Miller III,*On group-theoretic decision problems and their classification*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 68. MR**0310044**

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1976-0393249-4

Keywords:
groups with many stable letters,
conjugate powers,
conjugacy and generalized conjugacy problem,
word and generalized word problem,
-group,
residually-free and -free,
malnormal,
reachability problem

Article copyright:
© Copyright 1976
American Mathematical Society