Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A geometric property of certain plane sets


Author: Kenneth Pietz
Journal: Proc. Amer. Math. Soc. 54 (1976), 197-200
DOI: https://doi.org/10.1090/S0002-9939-1976-0393429-8
MathSciNet review: 0393429
Full-text PDF

Abstract | References | Additional Information

Abstract: Suppose $ K$ is a compact subset of the plane of the form $ \overline {\Delta (0,1)} \backslash \cup _{n = 1}^\infty \Delta ({p_n},{r_n})$ where $ \overline {\Delta ({p_n},{r_n})} \subseteq \Delta (0,1)$ for each $ n$ and $ \overline {\Delta ({p_i},{r_i})} \cap \overline {\Delta ({p_j},{r_j})} = \emptyset $ for $ i \ne j$. Let $ \alpha = {\sup _{i \geqslant 1}}(({r_i} + 1)/{r_i})$ and define the sets $ {\partial _{\ast}}K \equiv \partial \Delta (0,1) \cup [ \cup _{n = 1}^\infty \partial \Delta ({p_n},{r_n})]$ and $ F(K) \equiv \{ z \in K\backslash {\partial _{\ast}}K = z{\text{ is not a point of density of }}K\} $. It is proved that if $ \alpha < 1$, then $ {\mathcal{K}^1}[F(K)] = 0$, where $ {\mathcal{K}^1}$ denotes Hausdorff one-dimensional measure.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. I, Proc. Cambridge Philos. Soc. 41(1945), 103-110. MR7, 10. MR 0012325 (7:10e)
  • [2] Andrew Browder, Introduction to function algebras, Benjamin, New York, 1969. MR39 #7431. MR 0246125 (39:7431)
  • [3] Ennio DeGiorgi, Su una teoria generale della misura $ (r - 1)$-dimensionale in uno spazio ad $ r$ dimensioni, Ann. Mat. Pura Appl. (4) 36(1954), 191-213. MR15, 945. MR 0062214 (15:945d)
  • [4] -, Nuovi teoremi relativi alle misure $ (r - 1)$-dimensionali in uno spazio ad $ r$ dimensioni, Ricerche Mat. 4(1955), 95-113. MR17, 596. MR 0074499 (17:596a)
  • [5] Herbert Federer, A note on the Gauss-Green theorem, Proc. Amer. Math. Soc. 9(1958), 447-451, MR20 #1751. MR 0095245 (20:1751)
  • [6] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. MR 0410387 (53:14137)
  • [7] A. I. Vol'pert, The spaces $ BV$ and quasilinear equations, Mat. Sb. 73(115)(1967), 255-302 = Math. USSR Sb. 2(1967), 225-267. MR35 #7172. MR 0216338 (35:7172)
  • [8] Lawrence Zalcman, Analytic capacity and rational approximation, Lecture Notes in Math., vol. 50, Springer-Verlag, New York and Berlin, 1968. MR37 #3018. MR 0227434 (37:3018)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0393429-8
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society