Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A new proof for an inequality of Jenkins


Author: George B. Leeman
Journal: Proc. Amer. Math. Soc. 54 (1976), 114-116
MathSciNet review: 0393457
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: A new proof of Jenkins' inequality

$\displaystyle \operatorname{Re} ({e^{2i\theta }}{a_3} - {e^{2i\theta }}a_2^2 - ... ... ^2} - \tfrac{1} {4}{\tau ^2}\log (\tau /4),\quad 0 \leqslant \tau \leqslant 4,$

for univalent functions $ f(z) = z + \sum\nolimits_{n = 2}^\infty {{a_n}{z^n}} $ is presented.

References [Enhancements On Off] (What's this?)

  • [1] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
  • [2] G. M. Goluzin, On distortion theorems and the coefficients of univalent functions, Mat. Sb. 1938, 321-330. (Russian)
  • [3] G. M. Goluzin, Some questions of the theory of univalent functions, Trudy Mat. Inst. Steklov. 27 (1949), 111 (Russian). MR 0042510
  • [4] James A. Jenkins, On certain coefficients of univalent functions, Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 159–194. MR 0117345
  • [5] Edmund Landau, Über die Blochsche Konstante und zwei verwandte Weltkonstanten, Math. Z. 30 (1929), no. 1, 608–634 (German). MR 1545082, 10.1007/BF01187791
  • [6] Karl Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103–121 (German). MR 1512136, 10.1007/BF01448091


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1976-0393457-2
Keywords: Univalent functions, coefficient estimates
Article copyright: © Copyright 1976 American Mathematical Society