ON L^1 CONVERGENCE OF CERTAIN COSINE SUMS

JOHN W. GARRETT AND ČASLAV V. STANOJEVIĆ

Abstract. Rees and Stanojević introduced a new class of modified cosine sums $(g_n(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a(k) + \sum_{k=1}^{n} \Delta a(j) \cos kx)$ and found a necessary and sufficient condition for integrability of these modified cosine sums. Here we show that to every classical cosine series f with coefficients of bounded variation, a Rees-Stanojević cosine sum g_n can be associated such that g_n converges to f pointwise, and a necessary and sufficient condition for L^1 convergence of g_n to f is given. As a corollary to that result we have a generalization of the classical result of this kind. Examples are given using the well-known integrability conditions.

Theorem A gives a necessary and sufficient condition for a sine series with coefficients of bounded variation and converging to zero to be the Fourier series of its sum, or equivalently, for its sum to be integrable. Theorem B shows that if such a series is a Fourier series then its convergence is "good", that is, convergence in the L^1 metric.

Theorem A [1]. Let $f(x) = \sum_{n=1}^{\infty} b(n) \sin nx$ where $\Delta b(n) = b(n) - b(n + 1)$ and $\lim_{n \to \infty} b(n) = 0$. Then $f \in L^1[0,\pi]$ if and only if $\sum_{n=1}^{\infty} |\Delta b(n)| \log n < \infty$.

Theorem B [1]. Let $f(x)$ be as in Theorem A. If $f \in L^1[0,\pi]$ then $\sum_{k=1}^{n} b(k) \sin kx$ converges to f in the L^1 metric.

There is no known analogue of Theorem A for the cosine series. Theorems C and D only give sufficient conditions for the cosine series to be the Fourier series of its sum.

In what follows we will denote by C the cosine series

$$\frac{1}{2}a(0) + \sum_{n=1}^{\infty} a(n) \cos nx$$

where $\lim_{n \to \infty} a(n) = 0$ and $\sum_{n=1}^{\infty} |\Delta a(n)| < \infty$. Partial sums of C will be denoted by $S_n(x)$, and $f(x) = \lim_{n \to \infty} S_n(x)$.

Theorem C [1]. If $\sum_{n=1}^{\infty} |\Delta a(n)| \log n < \infty$, then $f \in L^1[0,\pi]$ or, equivalently, C is the Fourier series of f.

Theorem D [1]. If $\sum_{n=1}^{\infty} |\Delta^2 a(n)|(n + 1) < \infty$, then $f \in L^1[0,\pi]$ or, equivalently, C is the Fourier series of f.

Received by the editors October 21, 1974 and, in revised form, January 9, 1975.

Key words and phrases. L^1 convergence of cosine sums.

1 Portions of these results appear in a doctoral thesis of John W. Garrett at the University of Missouri-Rolla in 1974.

© American Mathematical Society 1976
Theorem E is related to Theorem B. It shows that the classical cosine series is not as "well behaved" as the classical sine series.

Theorem E [1]. If $\sum_{n=1}^{\infty} |\Delta^2 a(n)|(n + 1) < \infty$, then S_n converges to f in the L^1 metric if and only if $\lim_{n \to \infty} a(n) \log n = 0$.

Rees and Stanojević introduced a new type of cosine sum and obtained a necessary and sufficient condition for integrability of its limit.

Theorem F [2]. Let
\[
g^*(x) = \sum_{k=0}^{n} \frac{a(k)}{2} + \sum_{j=k}^{n} a(j) \cos kx.
\]
where $\lim_{n \to \infty} a(n) = 0$ and $\Delta a(n) \geq 0$. Then
(i) $g^*(x) = \lim_{n \to \infty} g^*_n(x)$ exists for $x \in (0, \pi]$, and
(ii) $g^* \in L^1[0,\pi]$ if and only if $\sum_{n=1}^{\infty} a(n) < \infty$.

This paper proves an analogue of Theorem B for this type of cosine sum. Indeed, these modified cosine sums approximate their limit "better" than the classical cosine series since they converge in the L^1 metric to their limit when the classical cosine series may not.

Lemma 1. Let
\[
g_n^*(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a(k) + \sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a(j) \cos kx.
\]
Then $\lim_{n \to \infty} g_n(x) = f(x)$, for $x \in (0, \pi]$.

It will be shown in the proof of this lemma that
\[
g_n(x) = S_n(x) - a(n + 1) D_n(x).
\]
We prefer the form given in the lemma, however, since it emphasizes better its use in [2].

Proof. Denoting the Dirichlet kernel by $D_n(x)$ we get
\[
\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \left[\frac{1}{2} \sum_{k=0}^{n} \Delta a(k) + \sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a(j) \cos kx \right]
\]
\[
= \lim_{n \to \infty} \left[\frac{a(0)}{2} + \sum_{k=1}^{n} a(k) \cos kx - a(n + 1) D_n(x) \right]
\]
\[
= \lim_{n \to \infty} [S_n(x) - a(n + 1) D_n(x)] = f(x),
\]
$x \in (0, \pi]$ since $\lim_{n \to \infty} S_n(x) = f(x)$ and $\lim_{n \to \infty} a(n + 1) D_n(x) = 0$, $x \in (0, \pi]$.

Theorem 1. Let g_n be as defined in Lemma 1. Then g_n converges to f in the L^1 metric if and only if given $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that
\[
\int_{0}^{\delta} |\sum_{k=n+1}^{\infty} \Delta a(k) D_k(x)| < \varepsilon \text{ for all } n \geq 0.
\]

Proof. For the "if" part let $\varepsilon > 0$. Then there exists $\delta > 0$ such that
\[
\begin{align*}
\int_{0}^{\pi} |f - g_n| &= \int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_k(x) \right| \\
&= \int_{0}^{\delta} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_k(x) \right| + \int_{\delta}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_k(x) \right| \\
&< \frac{\varepsilon}{2} + \sum_{k=n+1}^{\infty} |\Delta a(k)| \int_{0}^{\pi} |D_k(x)| \\
&\leq \frac{\varepsilon}{2} + \sum_{k=n+1}^{\infty} |\Delta a(k)| \int_{0}^{\pi} \csc \frac{1}{2}x \\
&= \frac{\varepsilon}{2} + \sum_{k=n+1}^{\infty} |\Delta a(k)| \left[-2 \log |\csc \delta/2 - \cot \delta/2| \right] < \varepsilon
\end{align*}
\]

for sufficiently large \(n \) since \(\sum_{k=0}^{\infty} |\Delta a(k)| < \infty \).

For the "only if" part, let \(\varepsilon > 0 \). Then there exists an integer \(M \) such that
\[
\int_{0}^{\pi} |f(x) - g_n(x)| < \varepsilon/2 \text{ if } n \geq M.
\]
That is, \(\int_{0}^{\pi} |\sum_{k=n}^{\infty} \Delta a(k) D_k(x)| < \varepsilon/2 \) if \(n \geq M \). Now if \(\sum_{k=0}^{M} |\Delta a(k)| = 0 \), then for \(n > M \),
\[
\int_{0}^{\pi} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| < \varepsilon/2 < \varepsilon \text{ and, for } 0 \leq n \leq M,
\]
\[
\int_{0}^{\pi} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| < \int_{0}^{\pi} \left| \sum_{k=n}^{M} \Delta a(k) D_k(x) \right| < \varepsilon/2 < \varepsilon.
\]
If \(\sum_{k=0}^{M} |\Delta a(k)| \neq 0 \), let \(\delta = \varepsilon/2M \sum_{k=0}^{M} |\Delta a(k)| \). For \(n \geq M \),
\[
\int_{0}^{\delta} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| \leq \int_{0}^{\pi} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| < \varepsilon/2 < \varepsilon.
\]
For \(0 \leq n < M \),
\[
\begin{align*}
\int_{0}^{\delta} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| &\leq \int_{0}^{\delta} \left| \sum_{k=n}^{M-1} \Delta a(k) D_k(x) \right| + \int_{0}^{\delta} \left| \sum_{k=M}^{\infty} \Delta a(k) D_k(x) \right| \\
&\leq \int_{0}^{\delta} \left| \sum_{k=n}^{M-1} k |\Delta a(k)| \right| + \int_{0}^{\pi} \left| \sum_{k=M}^{\infty} \Delta a(k) D_k(x) \right| \\
&< \delta \sum_{k=0}^{M-1} k |\Delta a(k)| + \frac{\varepsilon}{2} \\
&\leq \delta M \sum_{k=0}^{M-1} |\Delta a(k)| + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\end{align*}
\]
So given \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(\int_{0}^{\delta} |\sum_{k=n}^{\infty} \Delta a(k) D_k(x)| < \varepsilon \) for all \(n \geq 0 \).

If \(\lim_{n \to \infty} \int_{0}^{\pi} |f(x) - g_n(x)| = 0 \), it is clear that \(f \in L^1[0, \pi] \).
\[
\int_{0}^{\pi} |f(x)| \leq \int_{0}^{\pi} |f(x) - g_n(x)| + \int_{0}^{\pi} |g_n(x)| < \infty
\]
since \(g_n(x) \) is a finite cosine sum.
\[f(x) = \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \] \(f(x) \) for all \(n \geq 0 \), then \(S_n \) converges to \(f \) in the \(L^1 \) metric if and only if \(\lim_{n \to \infty} a(n) \log n = 0 \).

Proof. Using \(g_n \) as defined in Lemma 1, we get

\[
\int_0^\pi |f(x) - S_n(x)| = \int_0^\pi |f(x) - g_n(x) + g_n(x) - S_n(x)|
\]

\[
\leq \int_0^\pi |f(x) - g_n(x)| + \int_0^\pi |g_n(x) - S_n(x)|
\]

\[
= \int_0^\pi |f(x) - g_n(x)| + \int_0^\pi |a(n + 1) D_n(x)|.
\]

Also

\[
\int_0^\pi |a(n + 1) D_n(x)| = \int_0^\pi |g_n(x) - S_n(x)|
\]

\[
\leq \int_0^\pi |f(x) - S_n(x)| + \int_0^\pi |f(x) - g_n(x)|.
\]

Since \(\int_0^\pi |a(n + 1) D_n(x)| \) behaves like \(a(n + 1) \log n \) for large values of \(n \), and \(\lim_{n \to \infty} \int_0^\pi |f(x) - g_n(x)| = 0 \), the corollary is proved.

The following examples show that known sufficient conditions for integrability of the limit of a cosine series are also sufficient for the \(L^1 \) convergence of \(g_n \) to that limit, since they imply the necessary and sufficient condition from Theorem 1.

Example 1. Let \(\sum_{n=1}^{\infty} |A^2 a(n)|(n + 1) < \infty \). Then \(g_n \) converges to \(f \) in the \(L^1 \) metric space. Denoting the Fejér kernel by \(F_n(x) \), we get

\[
\int_0^\pi |f(x) - g_n(x)| = \int_0^\pi \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_k(x) \right|
\]

\[
= \int_0^\pi \left| \sum_{k=n+1}^{\infty} (k + 1) \Delta^2 a(k) F_k(x) - (n + 1) \Delta a(n) F_n(x) \right|
\]

\[
\leq \sum_{k=n+1}^{\infty} (k + 1) |\Delta^2 a(k)| \int_0^\pi F_k(x) + (n + 1) |\Delta a(n)| \int_0^\pi F_n(x)
\]

\[
\leq \pi \sum_{k=n+1}^{\infty} (k + 1) |\Delta^2 a(k)|
\]

since \(\int_0^\pi F_k(x) = \pi/2 \) and

\[
(n + 1) |\Delta a(n)| = \sum_{k=n}^{\infty} (n + 1) \left(\left| \Delta a(k) \right| - |\Delta a(k + 1)| \right)
\]

\[
\leq \sum_{k=n}^{\infty} (n + 1) |\Delta^2 a(k)| \leq \sum_{k=n}^{\infty} (k + 1) |\Delta^2 a(k)|.
\]

Since \(\sum_{n=1}^{\infty} (n + 1) |\Delta^2 a(n)| < \infty \), then \(\lim_{n \to \infty} \int_0^\pi |f(x) - g_n(x)| = 0 \).

Example 2. Let \(\sum_{k=n}^{\infty} |\Delta a(k)| \log k < \infty \). Then \(g_n \) converges to \(f \) in the \(L^1 \) metric space, for
\[\int_0^\pi |f(x) - g_n(x)| = \int_0^\pi \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_k(x) \right| \]
\[\leq \sum_{k=n+1}^{\infty} |\Delta a(k)| \int_0^\pi |D_k(x)|. \]

Since \(\int_0^\pi |D_k(x)| \) behaves like \(\log k \) for large \(k \), and \(\sum_{k=1}^{\infty} |\Delta a(k)| \log k < \infty \), we get \(\lim_{n \to \infty} \int_0^\pi |f(x) - g_n(x)| = 0 \). As a corollary of this example we have the well-known Theorem E.

Theorems C and D can be combined as in the following lemma.

Lemma 2. Let \(a(n) = b(n) + c(n) \) where \(\sum_{n=1}^{\infty} |\Delta b(n)| \log n < \infty \), \(\sum_{n=1}^{\infty} |\Delta^2 c(n)|(n + 1) < \infty \), and \(\lim_{n \to \infty} b(n) = \lim_{n \to \infty} c(n) = 0 \). Then \(f \in L^1[0, \pi] \).

It is interesting to note that in Lemma 2 we may have
\[\sum_{n=1}^{\infty} |\Delta a(n)| \log n = \sum_{n=1}^{\infty} |\Delta^2 a(n)|(n + 1) = \infty. \]

Example 3. Let \(f(x) \) be as in Lemma 2. Then \(g_n \) converges to \(f \) in the \(L^1 \) metric. This follows from Examples 1 and 2, writing \(a(n) = b(n) + c(n) \).

Stanojević combined Theorems C and D in a different way.

Theorem G [3]. Let \(a(n) = a(n)\beta(n) \) where \(\sum_{n=1}^{\infty} |\Delta a(n)| < \infty \), \(\sum_{n=1}^{\infty} |\Delta^2 \beta(n)|(n + 1) < \infty \), \(|\beta(n)| \leq M \), and \(\sum_{n=1}^{\infty} |\beta(n)\Delta a(n)| \log(n) < \infty \). Then \(f \in L^1[0, \pi] \).

Example 4. Let \(f(x) \) be as in Theorem G. Then \(g_n \) converges to \(f \) in the \(L^1 \) metric. We get
\[\int_0^\pi |f(x) - g_n(x)| \leq M \sum_{k=n}^{\infty} |\beta(k)\Delta a(k)| \log k \]
\[+ N \sum_{k=n}^{\infty} (k + 1)(|\alpha(k + 1)\Delta^2 \beta(k)| + |\Delta a(k + 1)\Delta \beta(k + 1)|). \]

Since both series converge, we have \(\lim_{n \to \infty} \int_0^\pi |f(x) - g_n(x)| = 0 \).

References