LARGE BASIS DIMENSION AND METRIZABILITY

GARY GRUENHAGE

Abstract. In this paper it is proved that if X is a regular Lindelöf space having finite large basis dimension, then X is metrizable if and only if it is a Σ-space or a $\omega\Delta$-space.

Introduction. A collection Γ of subsets of a set X is said to have rank 1 if whenever $g_1, g_2 \in \Gamma$ and $g_1 \cap g_2 \neq \emptyset$, then $g_1 \subseteq g_2$ or $g_2 \subseteq g_1$. According to P. J. Nyikos [8], a topological space X is said to have large basis dimension $\leq n$, denoted $\text{Bad } X \leq n$, if X has a basis which is the union of $\leq n + 1$ rank 1 collections of open sets. (A. V. Arhangel'skii [1], [2], [3] uses the terminology “having a basis of big rank $\leq n + 1$” instead of “large basis dimension $\leq n$”.) $\text{Bad } X$ coincides with $\dim X$ and $\text{Ind } X$ for all metric spaces. For the case $n = 0$, the spaces become the nonarchimedean spaces of A. F. Monna [6].

It is the purpose of this paper to prove that every compact T_2-space having finite large basis dimension is metrizable. This answers a question of Arhangel'skii, first proposed in [2], where he proves that every compact nonarchimedean space is metrizable, and repeated in [3]. Some generalizations of the above result are also obtained.

Main result. All our spaces are assumed to be T_1. The main result of this paper is the following:

Theorem 1. Let X be a regular Lindelöf space having finite large basis dimension. Then the following are equivalent:

(i) X is metrizable,
(ii) X is a Σ-space [7],
(iii) X is a $\omega\Delta$-space [4].

As an immediate corollary, we have the result stated in the introduction:

Corollary 1. Every compact T_2-space having finite large basis dimension is metrizable.

By [3, Lemma 3], if X has a basis $\Gamma = \bigcup \{ \Gamma_i \mid i = 1, 2, \ldots, n \}$ such that each Γ_i is a rank 1 collection, then $X = \bigcup \{ X_i \mid i = 1, 2, \ldots, n \}$ where X_i is such that Γ_i contains a local basis of each point of X_i. Our method of proving Theorem 1 is to show that if X is a regular Lindelöf space satisfying (ii) or (iii), then X is first countable and each X_i is Lindelöf. From this it will follow (see Lemma 3) that for each X_i there is a point-countable collection of open
subsets of X which contains a basis of each point of X; hence X has a point-countable basis, and is therefore metrizable by known results. It will be helpful to establish some lemmas.

Lemma 1. Let Γ be a rank 1 collection of open subsets of a space X which contains a basis at a point $x_0 \in X$. Let $\Gamma' \subset \Gamma$ and suppose $x_0 \in \cap \Gamma'$. Then either $x_0 \in \text{Int}(\cap \Gamma')$ or $\{x_0\} = \cap \Gamma'$. In the latter case, either Γ' contains a basis at x_0, or x_0 is an isolated point.

Proof. Suppose there exists $y \in \cap \Gamma'$, $y \neq x_0$. Choose $g \in \Gamma$ such that $x_0 \in g$ but $y \not\in g$. Then if $g' \in \Gamma'$, $g' \not\subset g$ and so $g \subset g'$. Hence $g \subset \cap \Gamma'$ and so $x_0 \not\in \text{Int}(\cap \Gamma')$.

Now suppose $\{x_0\} = \cap \Gamma'$, but that Γ' does not contain a basis at x_0. Then there is some $g \in \Gamma$ which contains x_0 but does not contain any element of Γ'. Thus $g \subset g'$ for all $g' \in \Gamma'$, so $g \subset \cap \Gamma' = \{x_0\}$ and x_0 is therefore isolated.

Let Ω be the first uncountable ordinal, and let P_Ω be the space obtained from the ordinal space $[0,\Omega]$ by isolating all ordinals less than Ω.

Lemma 2. Let X be a regular Lindelöf space having finite large basis dimension. Then either X is first countable, or X contains a closed subspace homeomorphic to P_Ω.

Proof. Suppose X is not first countable at $x_0 \in X$. Let \mathcal{U}_0 be an open cover of $X - \{x_0\}$ such that for each $U \in \mathcal{U}_0$, $x_0 \not\in \overline{U}$. By [3, Theorem 1], X is hereditarily metacompact. Let $\mathcal{V} = \{V_\alpha | \alpha \in A\}$ be a minimal point finite open refinement of \mathcal{U}_0. Since $\{x_0\} = \cap \{X - V_\alpha | \alpha \in A\}$, \mathcal{V} must be uncountable, for otherwise it would follow from Lemma 1 that x_0 has a countable basis. Choose $x_\alpha \in V_\alpha - \bigcup \{V_\beta | \beta \neq \alpha\}$. Then $S' = \{x_\alpha | \alpha \in A\}$ has no cluster point in $X - \{x_0\}$. Since X is Lindelöf, every neighborhood of x_0 contains all but countably many elements of S'.

Let $S = S' \cup \{x_0\}$. We claim that S is homeomorphic to P_Ω. To prove this, we need only show that if C is an infinite subset of S' such that $\text{card}(C) < \text{card}(S')$, then C is closed in S. To this end, let Γ be a rank 1 collection of open sets which contains a basis at x_0, and for each $c \in C$ choose $U_c \in \Gamma$ such that $x_0 \in U_c$ but $c \not\in U_c$. $U_C = \cap \{U_c | c \in C\}$ contains all but at most $\aleph_0 \cdot \text{card}(C) = \text{card}(C)$ elements of S', and so by Lemma 1, $x_0 \in \text{Int}(U_C)$. Thus C is closed and the proof is finished.

Lemma 3. Let X be a first countable space, and let X' be a subspace of X such that some rank 1 collection Γ_0 of open subsets of X contains a basis at each point of X'. Suppose also that X' is Lindelöf. Then there exists a point-countable collection of open subsets of X which contains a basis at each point of X'.

Proof. Let \mathcal{C} be the set of all chains in Γ_0 (i.e., $C \in \mathcal{C}$ if C is a subset of Γ_0 and is totally ordered by inclusion), and let $\Gamma = \{ \bigcup C | C \in \mathcal{C} \}$. By [9, Lemma 2], Γ has rank 1. Let $\Gamma' = \{ g \cap X' | g \in \Gamma \}$. Clearly, Γ' is the set of all unions of chains in $\Gamma_0 = \{ g \cap X' | g \in \Gamma_0 \}$. By [9, Lemma 2], the elements of Γ' are clopen (open and closed) subsets of X'. By [9, Theorems 3 and 4], X' can be partitioned into a collection \mathcal{F}_Ω of disjoint elements of Γ'. Furthermore we can ensure that this collection contains more than one element.
Clearly, any two elements of the corresponding collection \(\mathcal{U}_0 \) of elements of \(\Gamma \) are also disjoint.

We proceed to construct, for each \(\alpha < \Omega \), a collection \(\mathcal{U}_\alpha \) of disjoint elements of \(\Gamma \). Suppose \(\mathcal{U}_\alpha \) has been defined for all \(\alpha < \beta \). Let \(\mathcal{V}_\beta = \{ \cap_{\alpha < \beta} U_\alpha | U_\alpha \in \mathcal{U}_\alpha \} \), and let \(\mathcal{V}_\beta = \{ V \in \mathcal{V}_\beta | V \cap X' \text{ contains more than one point} \} \). By [3, Lemma 4], \(V \cap X' \) is clopen in \(X' \) whenever \(V \in \mathcal{V}_\beta \). Thus \(V \cap X' \) can be partitioned into a collection \(\mathcal{U}_V \) of (more than one) disjoint elements of \(\Gamma' \). Since \(V \cap X' \subset \text{Int}(V) \), we can ensure that every element of the corresponding collection \(\mathcal{U}_V \) of elements of \(\Gamma \) is contained in \(V \). Let \(\mathcal{U}_V = \bigcup \{ \mathcal{U}_V | V \in \mathcal{V}_\beta \} \).

Suppose \(V \in \mathcal{V}_\beta \), \(V \cap X' = \{ x_V \} \), and \(V \) contains more than one point of \(X \). Then \(x_V \in \text{Int}(V) \), and so there exists a local basis \(\{ g_n(V) \}_{n=1}^{\infty} \) of \(x_V \) such that \(g_n(V) \subset V \) for all \(n \). Let \(\mathcal{P}_\beta \) be the collection of all such \(g_n(V) \)'s.

Let \(\mathcal{W} = \bigcup \{ \mathcal{U}_\beta \cup \mathcal{P}_\beta | \beta < \Omega \} \). Since \(\mathcal{V}_\beta \) is a collection of disjoint sets, so is \(\mathcal{W} \); also, \(\mathcal{P}_\beta \) is point-countable, and \(\bigcup \mathcal{P}_\beta \cap \bigcup \mathcal{U}_\beta = \emptyset \).

We claim that \(\mathcal{W} \) is point-countable. Choose \(x_0 \in X \). If \(x_0 \in \bigcup \mathcal{P}_\beta \), then \(x_0 \notin \bigcup \{ \mathcal{U}_\alpha \cup \mathcal{P}_\alpha | \alpha > \beta \} \). In this case, then, \(x_0 \) belongs to at most countably many elements of \(\mathcal{W} \). Therefore, if \(x_0 \) is contained in uncountably many elements of \(\mathcal{W} \), then for each \(\alpha < \Omega \) there exists \(U_\alpha \in \mathcal{U}_\alpha \) such that \(x_0 \in U_\alpha \). By the way the \(U_\alpha \)'s were constructed, if \(\alpha < \alpha' < \Omega \), then \(U_\alpha \cap X' \subseteq U_{\alpha'} \cap X' \).

Let \(U_\alpha = \cap \{ U_\alpha | \alpha < \Omega \} \). \(U_\alpha \) cannot be clopen in \(X' \), for otherwise \((X' \cap U_\alpha) \cup \{ X' - U_\alpha | \alpha < \Omega \} \) is an open cover of \(X' \) with no countable subcover.

However, if \(U_\alpha \cap X' \) is not clopen, then again by [3, Lemma 4], \(U_\alpha \cap X' = \{ x' \} \) for some \(x' \in X' \). For each \(\alpha < \Omega \), choose \(x_\alpha \in (U_\alpha \cap X') - (U_{\alpha+1} \cap X') \). It is easy to see that \(x' \) is the only cluster point of \(S = \{ x_\alpha | \alpha < \Omega \} \) in \(X' \). Since \(X' \) is Lindelöf, every neighborhood of \(x' \) must contain all but countably many elements of \(S \), contradicting the fact that \(X \) is first countable. Therefore \(\mathcal{W} \) is point-countable as claimed.

Choose \(x \in X' \). There exists a least ordinal \(\beta \) such that \(x \notin \bigcup \mathcal{U}_\beta \). Let \(\mathcal{U}_x = \{ U_\alpha | x \in U_\alpha \in \mathcal{U}_\alpha, \alpha < \beta \} \), and let \(\cap \mathcal{U}_x = V \in \mathcal{V}_\beta \). Then \(V \cap X' = \{ x \} \). Hence either \(x \in g_n(V) \), \(n = 1, 2, \ldots \) or \(V = \{ x \} \), whence \(x \) is discrete in \(X \) or \(\mathcal{U}_x \) contains a local basis at \(x \). Therefore \(\mathcal{W} \cup \{ x \in X' | x \text{ is discrete in } X \} \) is a point-countable collection of open subsets of \(X \) which contains a local basis at each point of \(X' \), and the proof is finished.

Proof of Theorem 1. The theorem is true if \(\text{Bad } X = 0 \) [8, Theorem 1.3]. Suppose it is true whenever \(\text{Bad } X < k - 1 \). Let \(X \) be a regular Lindelöf space with \(\text{Bad } X \leq k - 1 \), i.e., \(X \) has a basis \(\Gamma = \bigcup \{ \Gamma_i | i = 1, 2, \ldots, k + 1 \} \) where each \(\Gamma_i \) has rank 1.

Since a paracompact \(w\Delta \)-space is an \(M \)-space, and every \(M \)-space is a \(\Sigma \)-space, we need only prove that if \(X \) is a \(\Sigma \)-space, then \(X \) is metrizable. Since \(P_1 \) is not a \(\Sigma \)-space, by Lemma 2 \(X \) is first countable. Let \(X_i \) be the subspace of \(X \) such that \(x \in X_i \) if and only if \(\Gamma_i \) contains a basis at \(x \). We need only prove that \(X_i \) is Lindelöf, for then we can apply Lemma 3 to each \(X_i \) to show that \(X \) has a point-countable basis, from which it follows that \(X \) is metrizable [10].

\(X \) is a nonarchimedean space, hence paracompact [9, Theorem 4]. Therefore if \(X_1 \) is not Lindelöf, there is an uncountable subset \(T \) of \(X_1 \) which has no
cluster point in X_1. Consider the closure \overline{T} of T in X. The points of T are discrete in \overline{T}, so $\bigcup \{T_2 \cup T_3, \ldots, T_{k+1}\}$ contains a basis (in the subspace \overline{T}) for each point of \overline{T}. Thus $\text{Bad} \overline{T} k - 1$, so by the induction hypothesis, \overline{T} is metrizable. Thus $\overline{T} - T$ is G_2 in \overline{T}, and so there exists an uncountable subset T' of T which is closed in \overline{T}, and therefore in X, contradicting the fact that X is Lindelöf. Thus X_1 is Lindelöf. Similarly, X_2, \ldots, X_{k+1} are Lindelöf, and the proof is finished.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616