Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Processes with infinitely many jumping particles


Author: Wayne G. Sullivan
Journal: Proc. Amer. Math. Soc. 54 (1976), 326-330
DOI: https://doi.org/10.1090/S0002-9939-1976-0394940-6
MathSciNet review: 0394940
Full-text PDF

Abstract | References | Additional Information

Abstract: We give sufficient conditions for a Markov process of an infinite particle system to be specified by a formal generator which has a term for each finite subset of particles. Under stronger assumptions we show that processes of this type preserve a certain property of probability measures.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Dobrušin, Markov processes with a large number of locally interacting components. I, II, Problemy Peredači Informacii 7 (1971), vyp. 2, 70-89; ibid. vyp. 3, 57-66 = Problems of Information Transmission 7 (1971), no. 2, 149-164; ibid. no. 3, 235-241. MR 46 #10097; #10098. MR 0311000 (46:10098)
  • [2] R. Holley, Markovian interaction processes with finite range interactions, Ann. Math. Statist, 43(1972), 1961-1967. MR 0373070 (51:9272)
  • [3] T. M. Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc. 165 (1972), 471-81. MR 46 #8328. MR 0309218 (46:8328)
  • [4] H. R. Pitt, Some generalizations of the ergodic theorem, Proc. Cambridge Philos. Soc. 38 (1942), 325-43. MR 4, 219. MR 0007947 (4:219h)
  • [5] F. Spitzer, Interaction of Markov processes, Advances in Math. 5 (1970), 246-290. MR 42 #3856. MR 0268959 (42:3856)
  • [6] -, Random fields and interacting particle systems, Math. Assoc. Amer., 1971. MR 0381041 (52:1938)
  • [7] W. G. Sullivan, A unified existence and ergodic theorem for Markov evolution of random fields, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 31 (1974), 47-56. MR 0375534 (51:11725)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0394940-6
Keywords: Infinite particle systems, ergodic measures
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society