AN ALMOST CONTINUOUS FUNCTION
\(f : S^n \to S^m \) WHICH COMMUTES WITH THE ANTIPODAL MAP

KENNETH R. KELLUM

Abstract. It is shown that if \(n, m \geq 1 \) are integers, then there exists an almost continuous function from the \(n \)-sphere \(S^n \) onto \(S^m \) which commutes with the antipodal map.

Introduction. Hunt [1] has generalized the Borsuk-Ulam antipodal point theorem by proving that no connectivity function \(f : S^n \to S^{n-1} \) commutes with the antipodal map. Since, if \(n > 1 \), by Corollary 1 of Stallings [5], such a function is almost continuous, it seems reasonable to ask whether Hunt's result holds for almost continuous functions. The purpose of this note is to give a counterexample.

Definitions and conventions. In the sequel we regard a function as being identical with its graph.

Suppose \(f : X \to Y \). That \(f \) is almost continuous means that if \(f \subset D \), where \(D \) is an open subset of \(X \times Y \), then there exists a continuous function \(g : X \to Y \) such that \(g \subset D \). That \(K \) is a minimal blocking set of a non-almost continuous function \(f \) means that \(K \) is a closed subset of \(X \times Y \), \(K \cap f = \emptyset \), \(K \cap g \neq \emptyset \) whenever \(g : X \to Y \) is continuous, and no proper subset of \(K \) has the preceding properties.

We denote by \(S^n \) the set of all points \(x = (x_1, x_2, \ldots, x_{n+1}) \) of Euclidian \((n + 1) \)-space \(\mathbb{R}^{n+1} \) such that \((\sum_{i=1}^{n+1} x_i^2)^{1/2} = 1 \). A function \(f : S^n \to S^m \) is said to commute with the antipodal map if \(f(-x) = -f(x) \) for each \(x \) in \(S^n \).

The natural projection map of \(X \times Y \) onto \(X \) is denoted by \(p : X \times Y \to X \). The letter \(c \) denotes the cardinality of the real line.

The main results.

Theorem 1. Suppose \(f : X \to S^m \) is not almost continuous where \(m \geq 1 \) and \(X \) is a compact metric space. There exists a minimal blocking set \(K \) of \(f \) and \(p(K) \) is a perfect set.

Received by the editors November 1, 1974.

AMS (MOS) subject classifications (1970). Primary 54C10, 54F60.

Key words and phrases. Almost continuous, antipodal map.

1 Author supported in part by NSF Grant GY-10729.
Proof. That K exists follows from Theorem 2 of [3]. Assume that z is an isolated point of $p(K)$ and let U be a neighborhood of z such that $U \cap p(K) = \{z\}$. Note that $p(K) \neq \{z\}$, because otherwise the constant map $g: X \to S^m$ such that $g(x) = f(z)$ would not intersect K. Thus $K - (p^{-1}(z) \cap K)$ is a closed, proper subset of K. By the minimality of K there exists a continuous function $g: X \to S^m$ such that $p(K \cap g) = \{z\}$. Let y be a point of S^m different from $f(z)$ and $g(z)$ and let V be a neighborhood of z such that $V \subset U$ and $g(V) \subset S^m - \{y\}$. Since $S^m - \{y\}$ is homeomorphic to R^m, it is an AR [4, p. 339], so the continuous function $h: (V - V) \cup \{z\} \to S^m - \{y\}$, defined by $h(V - V) = g(V - V)$ and $h(z) = f(z)$, has a continuous extension $h': V \to S^m - \{y\}$. But then $g' = g(X - V) \cup h'$ is a continuous function from X into S^m and $g' \cap K = \emptyset$, a contradiction. Thus $p(K)$ has no isolated points and is a perfect set.

Theorem 2. Suppose n and m are integers with $n, m \geq 1$. There exists an almost continuous function $f: S^n \to S^m$ which commutes with the antipodal map.

Proof. Denote by θ the set of all closed subsets T of $S^n \times S^m$ such that $\text{card}(p(T)) = c$. It follows from Theorem 1 that if $f: S^n \to S^m$ intersects each member of θ, then f is almost continuous. Using transfinite induction in a manner quite similar to the proof of Theorem 2 of [2], for each T in θ we may choose x_T in $p(T)$ and define $f(x_T)$ and $f(-x_T)$ so that $(x_T, f(x_T))$ is in T and $f(-x_T) = -f(x_T)$. Now, if x is a point of S^n such that $f(x)$ is not defined by the above induction, neither is $f(-x)$ defined. So, for each such x, we may define $f(x)$ and $f(-x)$ arbitrarily so long as $f(-x) = -f(x)$. This completes the proof.

References

1. J. H. V. Hunt, A connectivity map $f: S^n \to S^{n-1}$ does not commute with the antipodal map, Bol. Soc. Mat. Mexicana (2) 16 (1971), 43—45. MR 47 #9579.

Department of Mathematics, Miles College, Birmingham, Alabama 35208

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use