Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An almost continuous function $ f:$ $ S\sp{n}\rightarrow S\sp{m}$ which commutes with the antipodal map


Author: Kenneth R. Kellum
Journal: Proc. Amer. Math. Soc. 54 (1976), 431-432
DOI: https://doi.org/10.1090/S0002-9939-1976-0397684-X
MathSciNet review: 0397684
Full-text PDF

Abstract | References | Additional Information

Abstract: It is shown that if $ n,m \geqslant 1$ are integers, then there exists an almost continuous function from the $ n$-sphere $ {S^n}$ onto $ {S^m}$ which commutes with the antipodal map.


References [Enhancements On Off] (What's this?)

  • [1] J. H. V. Hunt, A connectivity map $ f:{S^n} \to {S^{n - 1}}$ does not commute with the antipodal map, Bol. Soc. Mat. Mexicana (2) 16 (1971), 43-45. MR 47 #9579. MR 0321046 (47:9579)
  • [2] K. R. Kellum, Almost continuous functions on $ {I^n}$, Fund. Math. 79 (1973), 213-215. MR 47 #9598. MR 0321065 (47:9598)
  • [3] -, On a question of Borsuk concerning non-continuous retracts. II, Fund. Math. (to appear). MR 0420540 (54:8554)
  • [4] K. Kuratowski, Topology. Vol. II, PWN, Warsaw; Acadaemic Press, New York, 1968. MR 41 #4467. MR 0259835 (41:4467)
  • [5] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263. MR 22 #8485. MR 0117710 (22:8485)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0397684-X
Keywords: Almost continuous, antipodal map
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society