APPLICATIONS OF INTERSECTION THEORY

RICHARD GOLDSTEIN AND EDWARD C. TURNER

Abstract. A Borsuk-Ulam type theorem for semifree actions on S^{2n} is obtained via a formula of Lefschetz.

One version of the classical Borsuk-Ulam Theorem states that if T is a fixed point free involution of S^n and $f: S^n \to S^n$ is of even degree, then there is an x such that $f(x) = f(T(x))$. [Conner and Floyd: Theorem 33.1]. In this note, using an argument of Lefschetz, we prove a similar theorem for semifree actions, i.e. differentiable group actions which are free outside the fixed point set.

Theorem. Let G be a compact Lie group acting semifreely and preserving orientation on S^{2n} with fixed point set $\{x, y\}$. Let $f = S^{2n} \to S^{2n}$ be differentiable such that f is a local diffeomorphism near x and y and $|\text{deg } f| > 2$; then if $1 \neq g \in G$ there exists a nonfixed point z such that $f(z) = f(g(z))$.

Before we prove this Theorem, we note that the condition on being a local diffeomorphism near x and y is necessary. Otherwise if $(p, q) = 1$, and $G = \mathbb{Z}_p$ is the action on S^2 gotten by suspending differentiably the usual \mathbb{Z}_p action on S^1 and $f: S^2 \to S^2$ is the map of degree q gotten by suspending the q-fold covering of S^1, then the conclusion of the theorem fails. We also note that the condition on g being a diffeomorphism induced by a group action is more restrictive than we need, in that we only need that 1 is not an eigenvalue of dg at x or y.

Proof of Theorem. Consider the intersection of ΔS^{2n} and $(f \times f \circ g)(\Delta S^{2n})$.

If the Theorem were false, the geometric intersection would consist of only the points $(f(x), f(x))$ and $(f(y), f(y))$. At each of these points the local algebraic intersection number is ± 1, since f was assumed to be a local diffeomorphism at x and y, and the local fixed point index of g at x and y is ± 1; thus the total algebraic intersection number of these 2 cycles is 0 or ± 2. According to [Lefschetz], this number is equal $L(f \circ g, f)$, which in this case is $2 \text{deg } f$.

One application of this Theorem is the nonexistence of smooth embeddings of S^2 in $S^2 \times S^2$ of the form (f, k), where $f(z) = z^m$ and degree k is n such

Received by the editors September 9, 1974.

Key words and phrases. Semifree action, fixed point, intersection number.

Partially supported by the National Science Foundation Grant 20-661A.

© American Mathematical Society 1976

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
that $|m|$ and $|n|$ are ≥ 2. Here G is the ordinary Z_n action on S^2, multiplication by the nth roots of unity.

REFERENCES
