Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Inequalities for $ \max\vert S_k\vert/b_k$ where $ k \in N^r$

Authors: Galen R. Shorack and R. T. Smythe
Journal: Proc. Amer. Math. Soc. 54 (1976), 331-336
MSC: Primary 60G45; Secondary 60G50, 60B10
MathSciNet review: 0400386
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Lemma $ 1$ presents a powerful general inequality for $ \max \vert{S_{\mathbf{k}}}\vert/{b_{\mathbf{k}}}$. This is applied in multidimensional time to sums of independent random variables and martingales to yield both old and new inequalities of the Doob, Hájek-Rényi, Skorokhod and Marcinkiewicz-Zygmund types. A brief application is made to the partial sum process.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G45, 60G50, 60B10

Retrieve articles in all journals with MSC: 60G45, 60G50, 60B10

Additional Information

PII: S 0002-9939(1976)0400386-4
Keywords: Hájek-Rényi and Skorokhod inequalities, multidimensional time, martingales, partial sum process
Article copyright: © Copyright 1976 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia