Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inequalities for $ \max\vert S_k\vert/b_k$ where $ k \in N^r$


Authors: Galen R. Shorack and R. T. Smythe
Journal: Proc. Amer. Math. Soc. 54 (1976), 331-336
MSC: Primary 60G45; Secondary 60G50, 60B10
DOI: https://doi.org/10.1090/S0002-9939-1976-0400386-4
MathSciNet review: 0400386
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Lemma $ 1$ presents a powerful general inequality for $ \max \vert{S_{\mathbf{k}}}\vert/{b_{\mathbf{k}}}$. This is applied in multidimensional time to sums of independent random variables and martingales to yield both old and new inequalities of the Doob, Hájek-Rényi, Skorokhod and Marcinkiewicz-Zygmund types. A brief application is made to the partial sum process.


References [Enhancements On Off] (What's this?)

  • [1] P. Bickel (1970), A Hájek-Rényi extension of Lévy's inequality and some applications, Acta Math. Acad. Sci. Hungar. 21, 199-206. MR 41 #6266. MR 0261653 (41:6266)
  • [2] P. Bickel and M. Wichura (1971), Convergence criteria for multiparameter stochastic processes and some applications, Ann. Math. Statist. 42, 1656-1670. MR 0383482 (52:4363)
  • [3] Z. W. Birnbaum and A. W. Marshall (1961), Some multivariate Chebyshev inequalities with extensions to continuous parameter processes, Ann. Math. Statist. 32, 687-703. MR 26 #5615. MR 0148106 (26:5615)
  • [4] B. M. Brown (1971), Martingale central limit theorems, Ann. Math. Statist. 42, 59-66. MR 44 #7609. MR 0290428 (44:7609)
  • [5] R. Cairoli (1970), Une inégalité pour martingales à indices multiples et ses applications, Séminaire de Probabilités, IV (Univ. Strasbourg, 1968/69), Lecture Notes in Math., vol. 124, Springer-Verlag, Berlin, pp. 1-27. MR 42 #5312. MR 0270424 (42:5312)
  • [6] Y. S. Chow (1960), A martingale inequality and the law of large numbers, Proc. Amer. Math. Soc. 11, 107 -111. MR 22 #3045. MR 0112190 (22:3045)
  • [7] J. L. Doob (1953), Stochastic processes, Wiley, New York; Chapman & Hall, London. MR 15, 445. MR 0058896 (15:445b)
  • [8] J. E. A. Dunnage (1972), Extensions of the Hájek-Rényi inequality to moments of higher order, Proc. Cambridge Philos. Soc. 72, 67-75. MR 48 #3108. MR 0324759 (48:3108)
  • [9] J.-P. Gabriel (1974), Lois des grands nombres, séries, et martingales à deux indices, C. R. Acad. Sci. Paris Sér. A-B 279, A169-A171. MR 0353427 (50:5910)
  • [10] G. A. Hunt (1966), Martingales et processus de Markov, Monographies de la Société Mathématique de France, no. 1, Dunod, Paris. MR 35 #2333. MR 0211453 (35:2333)
  • [11] S. R. Paranjape and C. Park (1973), Laws of iterated logarithm of multiparameter Wiener processes, J. Multivariate Anal. 3, 132-136. MR 48 #5194. MR 0326852 (48:5194)
  • [12] R. Pyke and G. R. Shorack (1968), Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems, Ann. Math. Statist. 39, 755-771. MR 37 #2357. MR 0226770 (37:2357)
  • [13] R. T. Smythe (1974), Sums of independent random variables on partially ordered sets, Ann. Probability 2, 906-917. MR 0358973 (50:11429)
  • [14] -(1975), Ergodic properties of marked point processes in $ {R^r}$, Ann. Inst. H. Poincaré 11, 109-125. MR 0375440 (51:11633)
  • [15] B. von Bahr and C. G. Esseen (1965), Inequalities for the $ rth$ absolute moment of a sum of random variables, $ 1 \leqslant r \leqslant 2$, Ann. Math. Statist. 36, 299-303. MR 30 #645. MR 0170407 (30:645)
  • [16] M. J. Wichura (1969), Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Statist. 40, 681-687. MR 39 #7663. MR 0246359 (39:7663)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G45, 60G50, 60B10

Retrieve articles in all journals with MSC: 60G45, 60G50, 60B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0400386-4
Keywords: Hájek-Rényi and Skorokhod inequalities, multidimensional time, martingales, partial sum process
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society