Anticonformal automorphisms of compact Riemann surfaces

Author:
Robert Zarrow

Journal:
Proc. Amer. Math. Soc. **54** (1976), 162-164

MSC:
Primary 30A46

MathSciNet review:
0404612

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that an automorphism of prime order of a compact Riemann surface is embeddable if it is the square of an anticonformal automorphism. Also, every embeddable automorphism of odd order of a compact Riemann surface is the square of an orientation reversing selfhomeomorphism.

**[1]**Adriano M. Garsia,*An imbedding of closed Riemann surfaces in Euclidean space*, Comment. Math. Helv.**35**(1961), 93–110. MR**0125591****[2]**Reto A. Rüedy,*Embeddings of open Riemann surfaces*, Comment. Math. Helv.**46**(1971), 214–225. MR**0304649****[3]**-,*Symmetric embeddings of Riemann surfaces*, Discontinuous Groups and Riemann Surfaces, Princeton Univ. Press, Princeton, N.J., 1971, pp. 406-418.**[4]**Robert Zarrow,*A canonical form for symmetric and skew-symmetric extended symplectic modular matrices with applications to Riemann surface theory*, Trans. Amer. Math. Soc.**204**(1975), 207–227. MR**0407324**, 10.1090/S0002-9947-1975-0407324-2

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30A46

Retrieve articles in all journals with MSC: 30A46

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0404612-7

Article copyright:
© Copyright 1976
American Mathematical Society