THE NUMERICAL RANGE OF AN UNBOUNDED OPERATOR

M. J. CRABB

Abstract. The numerical range of an unbounded linear operator on a complex Banach space is the whole complex plane.

Let X denote a Banach space over \mathbb{C}, X' the dual space of X, $S = \{x \in X: \|x\| = 1\}$, and let T be an unbounded operator defined on the whole of X. Given $x \in S$, let $V(T,x) = \{f(Tx): f \in X', \|f\| = f(x) = 1\}$. The numerical range $V(T)$ is defined by

$$V(T) = \bigcup\{V(T,x): x \in S\}.$$

J. R. Giles and G. Joseph [2] prove that the semi-inner-product numerical range $W(T)$ has a certain density property, and B. Bollobas and S. Eldridge (preprint) prove that $W(T)$ is dense in \mathbb{C}. These imply the corresponding results for $V(T)$.

Theorem. $V(T) = \mathbb{C}$.

We use the following slight extension of Theorem 1 of [1].

Lemma. Let $x, y \in X$, and operator R be defined on $\text{lim}(x,y)$. Suppose that $\|x + Ry\| < \|x\| - (8\|Rx\| \|y\|)^{1/2}$. Then $\bigcup\{V(R,z): z \in S \cap \text{lim}(x,y)\}$ contains 0 as an interior point.

Proof. There is a continuous linear operator R_1 on X such that $R = R_1$ on $\text{lim}(x,y)$. The proof in [1] shows that 0 is an interior point of $\bigcup\{V(R_1,z): z \in S \cap \text{lim}(x,y)\}$ which gives the result.

Proof of Theorem. As in [2], there is a sequence (x_n) in X such that $x_n \to 0$ and $Tx_n \to -x \neq 0$. Choose x_n such that

$$\|x + Tx_n\| < \|x\| - (8\|Tx\| \|x_n\|)^{1/2}.$$

By the Lemma $0 \in V(T)$. For any $\alpha \in \mathbb{C}$, $T - \alpha I$ is unbounded, so $0 \in V(T - \alpha I)$. Hence $\alpha \in V(T)$.

The Lemma implies that, for T defined on a subspace of X with $V(T) \subset \mathbb{R}$, where we take $V(T) = \bigcup\{V(T,x): x \in S, Tx \text{ defined}\}$, we have $\|Tx\|^2 \leq M\|x\| \|T^2x\|$ with $M = 8$. A result of Hille [3] implies that this holds with $M = 2$, and an example of Kolmogorov [4] (differentiation on $L_\infty(\mathbb{R})$) shows that 2 is the best constant.

Received by the editors March 12, 1975.

Key words and phrases. Numerical range, unbounded linear operator.
REFERENCES

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY, GLASGOW G12 8QW, SCOTLAND