ON A FIXED POINT PROBLEM OF D. R. SMART

IRA ROSENHOLTZ

In his book, Fixed point theorems, D. R. Smart poses the following problem which he says appears to be open: "Does every shrinking (i.e. contractive) mapping of the closed unit ball in a Banach space have a fixed point?" We answer this question in the negative by exhibiting a contractive mapping from the closed unit ball in a Banach space to itself which has no fixed point. Furthermore, our mapping has the additional properties that it is affine, a homeomorphism onto its image, and its inverse is Lipschitz.

Recall that $C_0$ is the Banach space of all real sequences $x = (x_1, x_2, \ldots)$ such that $\lim_{n \to \infty} x_n = 0$, and whose norm is defined by $\|x\| = \max(|x_n|)$.

We define our function as follows: Let $a_1, a_2, \ldots$ be any sequence of positive real numbers such that (i) each $a_j$ is less than 1, and (ii) the sequence of partial products, $p_n = \prod_{j=1}^{n} a_j$, is bounded away from zero. (One such sequence is defined by $a_n = \frac{2n + 1}{2^n + 2}$.). Now, if $x = (x_1, x_2, \ldots) \in C_0$, we let $f(x) = (1, a_1 x_1, a_2 x_2, a_3 x_3, \ldots)$. Then clearly if $\|x\| \leq 1$, $\|f(x)\| \leq 1$. (In fact, $\|f(x)\| = 1$, if $\|x\| \leq 1$.) Thus $f$ takes the unit ball in $C_0$ to itself. That $f$ is affine (i.e. that $f(tx + (1 - t)y) = tf(x) + (1 - t)f(y)$) is trivial. Next, notice that

$$\|f(x) - f(y)\| = \max\{|a_n(x_n - y_n)|\} = a_j|x_j - y_j|,$$

for some $j$, and if $x \neq y$,

$$a_j|x_j - y_j| \leq |x_j - y_j| \leq \max\{|x_n - y_n|\} = \|x - y\|.$$

Therefore, since $\|f(x) - f(y)\| \leq \|x - y\|$ if $x \neq y$, $f$ is contractive.

Finally, suppose $x = (x_1, x_2, \ldots)$ is a fixed point of $f$. Then

$$x_1 = 1, \quad x_3 = a_2 x_2 = a_1 a_2,$$

$$x_2 = a_1 x_1 = a_1, \quad x_4 = a_3 x_3 = a_1 a_2 a_3, \text{ etc.}$$

and these numbers are bounded away from zero by the way that the sequence $a_1, a_2, \ldots$ was chosen. Thus, $x$ is not in $C_0$ and the proof is complete.

REFERENCE


DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WYOMING, LARAMIE, WYOMING 82071

Received by the editors May 18, 1975.


© 1976, American Mathematical Society