A COUNTEREXAMPLE CONCERNING INSEPARABLE FIELD EXTENSIONS

JAMES KEVIN DEVENEY

Abstract. Let $K \supseteq M \supseteq k$ be a chain of fields of characteristic $p \neq 0$ where K is separable over M and M is purely inseparable over k. Recently it has been shown that if K has a separating transcendence basis over M or if M is of bounded exponent over k, then $K = M \otimes_k S$ where S is separable over k. This note presents an example to show that, in general, no such S need exist.

Throughout, we consider a chain of fields $K \supseteq M \supseteq k$ of characteristic $p \neq 0$ where K is separable over M and M is purely inseparable over k. Recent papers [1] and [2], have examined the question of when K can be expressed as $M \otimes_k S$ where S is a separable extension of k. It has been shown that if M is of bounded exponent over k [1, Theorem 5], or if K has a separating transcendence basis over M [2, Lemma 4], then $K = M \otimes_k S$ for some S. The purpose of this note is to provide an example to show that, in general, no such S exists. Necessarily, M will be of unbounded exponent over k and K will not have a separating transcendence basis over M.

Example 1. Let P be a perfect field of characteristic $p \neq 0$ and let $\{x_1, x_2, \ldots, x_n, \ldots\}$ be an algebraically independent set over P. Set $K = P(x_1, x_2, \ldots, x_n, \ldots)$, $M = P(x_1x_1^{p^2}, x_2x_1^{p^2}, \ldots, x_nx_1^{p^2}, \ldots)$, $k = P(x_1x_1^{p^2}, x_2x_1^{p^2}, \ldots, x_nx_1^{p^2}, \ldots)$. Since $(x_1x_1^{p^2}, x_2x_1^{p^2}, \ldots, x_nx_1^{p^2}, \ldots)$ is a p-basis for M and remains p-independent in K, so K is separable over M. Moreover, elementary calculations show $\{x_1x_1^{p^2}, x_2x_1^{p^2}, \ldots, x_nx_1^{p^2}, \ldots\}$ is actually a p-basis for K, and thus K is relatively perfect over M, i.e. $K = M(K^p)$. We now assume there exists a field S separable over k such that $K = M \otimes_k S$.

Lemma 2. S is relatively perfect over k.

Proof. Recall that $K = M(K^p)$. Since we are assuming $K = M(S)$, $K^p = M^p(S^p)$, and so $K = M(M^p(S^p)) = M(S^p)$. Thus $K = M \otimes_k k(S^p)$ and we must have $S = k(S^p)$.

Now since S is relatively perfect over k, $S = k(S^p) \subseteq k(K^p)$ for all n. Thus $S \subseteq \cap k(K^p)$.

Lemma 3. $\cap k(K^p) \subseteq P(x_1^{p^2}, x_2^{p^2}, \ldots, x_n^{p^2}, \ldots) = \bar{k}$.

Proof. Since $\bar{k} \supseteq k$, $\cap k(K^p) \subseteq \cap \bar{k}(K^{p^2})$. Since...
\[K = \overline{k(x_1)} \otimes_{\overline{k}} \overline{k(x_2)} \otimes_{\overline{k}} \cdots \otimes_{\overline{k}} \overline{k(x)} \otimes_{\overline{k}} \cdots, \]
\[\cap \overline{k(K^p)} = \overline{k}, \text{ and the lemma is established.} \]

We now have \(S \subseteq \cap k(K^p) \subseteq \overline{k}. \) To show no such \(S \) exists it suffices to show \(M(\overline{k}) \neq K. \)

\[M(\overline{k}) = P(x_1, x_2, \ldots, x_n, x_{n+1}, \ldots) \left(x_1^p, x_2^p, \ldots, x_n^p, \ldots \right) \]
\[= P(x_1, x_2, \ldots, x_n, x_{n+1}, \ldots) \left(x_1^p \right) = M(x_1^p). \]

\(P(x_1, \ldots, x_n) \) is algebraic over \(P(x_1, x_1^p, \ldots, x_{n-1}^p) \), and hence both fields have the same transcendence degree \(n \) over \(P \), which means that \(x_1, x_1x_2^p, \ldots, x_{n-1}x_n^p \) are algebraically independent over \(P \). Since this is true for all \(n \), the set \(\{ x_1, x_1x_2^p, x_2x_3^p, \ldots \} \) is algebraically independent over \(P \), and hence \(x_1 \) is transcendental over \(M(\overline{k}) \subseteq M(x_1) \subseteq K. \) Thus no such \(S \) can exist.

References

Department of Mathematical Sciences, Virginia Commonwealth University, Richmond, Virginia 23284