Arithmetic means of Fourier coefficients

Author:
Rajendra Sinha

Journal:
Proc. Amer. Math. Soc. **55** (1976), 83-86

MSC:
Primary 42A16

Addendum:
Proc. Amer. Math. Soc. **60** (1976), 243-244.

MathSciNet review:
0397274

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given the Fourier coefficients of an even continuous function, we find a necessary and sufficient condition such that their arithmetic means are the Fourier coefficients of an odd continuous function. A similar result is shown for those Lipschitz classes whose elements are automatically equivalent to continuous functions.

**[1]**Richard Bellman,*A note on a theorem of Hardy on Fourier constants*, Bull. Amer. Math. Soc.**50**(1944), 741–744. MR**0011137**, 10.1090/S0002-9904-1944-08230-X**[2]**G. H. Hardy,*Notes on some points in the integral calculus*, Messenger Math.**58**(1929), 50-52.**[3]**G. H. Hardy and J. E. Littlewood,*Some properties of fractional integrals. I*, Math. Z.**27**(1928), no. 1, 565–606. MR**1544927**, 10.1007/BF01171116**[4]**G. H. Hardy and J. E. Littlewood,*A convergence criterion for Fourier series*, Math. Z.**28**(1928), no. 1, 612–634. MR**1544980**, 10.1007/BF01181186**[5]**Masakiti Kinukawa and Satoru Igari,*Transformations of conjugate functions*, Tôhoku Math. J. (2)**13**(1961), 274–280. MR**0145298****[6]**A. A. Konyuškov,*On Lipschitz classes*, Izv. Akad. Nauk SSSR. Ser. Mat.**21**(1957), 423–448 (Russian). MR**0088601****[7]**E. S. Quade,*Trigonometric approximation in the mean*, Duke Math. J.**3**(1937), no. 3, 529–543. MR**1546008**, 10.1215/S0012-7094-37-00342-9**[8]**Rajendra Sinha,*On an infinite linear combination of partial sums of Fourier series*, Studia Math.**56**(1976), no. 2, 93–100. MR**0425482****[9]**A. Zygmund,*Trigonometric series: Vols. I, II*, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. MR**0236587**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
42A16

Retrieve articles in all journals with MSC: 42A16

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0397274-9

Keywords:
Fourier series,
conjugate function,
Lipschitz class,
strong summability,
closed graph theorem

Article copyright:
© Copyright 1976
American Mathematical Society