Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynomial identities of incidence algebras


Author: Robert B. Feinberg
Journal: Proc. Amer. Math. Soc. 55 (1976), 25-28
MSC: Primary 16A38
DOI: https://doi.org/10.1090/S0002-9939-1976-0404321-4
MathSciNet review: 0404321
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we determine the polynomial identities satisfied by incidence algebras. One of our results is logically equivalent to the Amitsur-Levitzki Theorem on the polynomial identities satisfied by $ {K_n}$, the algebra of of $ n \times n$ matrices over a field $ K$.


References [Enhancements On Off] (What's this?)

  • [1] P. Doubilet, G.-C. Rota and R. Stanley, The idea of generating function, Proc. Sixth Berkeley Sympos. on Math. Statist. and Probability, vol. II, Univ. of California Press, Berkeley, Calif., 1972, pp. 267-318. MR 0403987 (53:7796)
  • [2] R. B. Feinberg, Characterization of incidence algebras, (in preparation).
  • [3] D. S. Passman, Infinite group rings, Pure and Appl. Math., vol. 6, Dekker, New York, 1971. MR 47 #3500. MR 0314951 (47:3500)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A38

Retrieve articles in all journals with MSC: 16A38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0404321-4
Keywords: Chain, incidence algebra, polynomial identity, quasi-ordered set
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society