Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On realizing centralizers of certain elements in the fundamental group of a $ 3$-manifold


Author: C. D. Feustel
Journal: Proc. Amer. Math. Soc. 55 (1976), 213-216
MSC: Primary 55A05; Secondary 57A10
DOI: https://doi.org/10.1090/S0002-9939-1976-0405401-X
MathSciNet review: 0405401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main result in this note is that if $ \lambda $ is a simple loop in the boundary of a compact, irreducible, orientable $ 3$-manifold $ M$ and $ [\lambda ] \ne 1 \in {\pi _1}(M)$, one can represent the centralizer of $ [\lambda ]$ in $ {\pi _1}(M)$ by a Seifert fibred submanifold of $ M$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A05, 57A10

Retrieve articles in all journals with MSC: 55A05, 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0405401-X
Keywords: $ 3$-manifold, fundamental group, centralizer
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society