Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the embedding of Schwartz spaces into product spaces


Author: Daniel J. Randtke
Journal: Proc. Amer. Math. Soc. 55 (1976), 87-92
MSC: Primary 46A15
DOI: https://doi.org/10.1090/S0002-9939-1976-0410316-7
MathSciNet review: 0410316
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every Schwartz space is embeddable into some sufficiently high power $ {E^I}$ of a given Banach space $ E$ if and only if $ E$ contains $ l_n^\infty $ uniformly.


References [Enhancements On Off] (What's this?)

  • [1] S. F. Bellenot, Factorable bounded operators and Schwartz spaces, Proc. Amer. Math. Soc. 42 (1974), 551-554. MR 48 #6899. MR 0328557 (48:6899)
  • [2] J. Diestel and R. H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39-44. MR 47 #5541. MR 0316993 (47:5541)
  • [3] T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191-210. MR 0336294 (49:1070)
  • [4] D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), 346-361. MR 0412775 (54:896)
  • [5] J. M. Horváth, Topological vector spaces and distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863. MR 0205028 (34:4863)
  • [6] H. Jarchow, Die Universalität des Raumes $ {\mathcal{C}_0}$für die Klasse der Schwartz-Räume, Math. Ann. 203 (1973), 211-214. MR 47 #9235. MR 0320700 (47:9235)
  • [7] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $ {L_p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 37 #6743. MR 0231188 (37:6743)
  • [8] J. Lindenstrauss and H. P. Rosenthal, The $ {\mathcal{L}_p}$ spaces, Israel J. Math. 7 (1969), 325-349. MR 42 #5012. MR 0270119 (42:5012)
  • [9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Springer-Verlag, Berlin and New York, 1973. MR 0415253 (54:3344)
  • [10] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $ {L^p}$, Asterisque, 11, Société Mathématique de France, 1974. MR 0344931 (49:9670)
  • [11] D. J. Randtke, A structure theorem for Schwartz spaces, Math. Ann. 201 (1973), 171-176. MR 48 #4691. MR 0326347 (48:4691)
  • [12] -, A simple example of a universal Schwartz space, Proc. Amer. Math. Soc. 37 (1973), 185-188. MR 47 #754. MR 0312192 (47:754)
  • [13] S. A. Saxon, Embedding nuclear spaces in products of an arbitrary Banach space, Proc. Amer. Math. Soc. 34 (1972), 138-140. MR 47 #7369. MR 0318823 (47:7369)
  • [14] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [15] T. Terzioğlu, A characterization of compact linear mappings, Arch. Math. 22 (1971), 76-78. MR 0291865 (45:954)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A15

Retrieve articles in all journals with MSC: 46A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0410316-7
Keywords: Compact linear operator, subspace factorization property, contains $ l_n^\infty $ uniformly, universal Schwartz space, Schwartz space
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society