Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on Borel's density theorem

Author: Harry Furstenberg
Journal: Proc. Amer. Math. Soc. 55 (1976), 209-212
MSC: Primary 22E40; Secondary 28A65
MathSciNet review: 0422497
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem of Borel: If $ G$ is a semisimple Lie group, $ H$ a closed subgroup such that the quotient space $ G/H$ carries finite measure, then for any finite-dimensional representation of $ G$, each $ H$-invariant subspace is $ G$-invariant. The proof depends on a consideration of measures on projective spaces.

References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Density properties of certain subgroups of semisimple groups without compact components, Ann. of Math. (2) 72(1960), 179-188. MR23 #A964. MR 0123639 (23:A964)
  • [2] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77(1963), 335-386. MR26 #3820; 28, p. 1246. MR 0146298 (26:3820)
  • [3] J. von Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. 36(1934), 445-492. MR 1501752
  • [4] J. von Neumann and E. P. Wigner, Minimally almost periodic groups, Ann. of Math. (2) 41(1940), 746-750. MR2, 127. MR 0002891 (2:127e)
  • [5] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, Berlin and New York, 1972. MR 0507234 (58:22394a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E40, 28A65

Retrieve articles in all journals with MSC: 22E40, 28A65

Additional Information

Keywords: Semisimple group, lattice, minimally-almost-periodic, representation, linear variety, measure, projective space
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society